Skip to main content

Advertisement

Log in

Entropy Based Image Segmentation for Energy Efficient LTE System with Cloud

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays LTE network provides high speed data transmission for advanced web based applications and consumes lot of energy. Energy consumption needs to be minimized for a mobile devices running on batteries. In this paper, we have considered a problem of minimizing total energy consumption of a mobile device transmitting an image to cloud through LTE network with a specific bit error rate requirement. Total energy consumption per information bit is calculated by measuring computation energy, circuit energy and radio energy. We have also proposed an algorithm to minimize the total energy consumption while transferring the image. The algorithm makes use of the information entropy of the segments that the image contains. We have also given the complexity of the algorithm in terms of the total number of required operations. As compared to the energy required for transferring the fully uncompressed or fully compressed image, our optimized algorithm can save upto 26 % energy. Energy saving depends on transmission distance and required bit error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Addis, B., Capone, A., Carello, G., Gianoli, L., & Sanso, B. (2014). Energy management through optimized routing and device powering for greener communication networks. IEEE/ACM Transactions on Networking, 22(1), 313–325.

    Article  Google Scholar 

  2. Deruyck, M., Tanghe, E., Joseph, W., Vereecken, W., Pickavet, M., Martens, L., et al. (2011). Model for power consumption of wireless access networks. IET Science, Measurement Technology, 5(4), 155–161.

    Article  Google Scholar 

  3. Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., & Spatscheck, O. (2012). A close examination of performance and power characteristics of 4G LTE networks. In Proceedings of the 10th international conference on mobile systems, applications, and services.

  4. G.T.. 3GPP, http://www.3gpp.org/specifications/releases/73-release-7 (Release 7).

  5. Khan, A. R., Othman, M., Madani, S. A., & Khan, S. U. (2014). A survey of mobile cloud computing application models. IEEE Communications Surveys Tutorials, 16(1), 393–413.

    Article  Google Scholar 

  6. Vallina-Rodriguez, N., & Crowcroft, J. (2013). Energy management techniques in modern mobile handsets. IEEE Communications Surveys Tutorials, 15(1), 179–198.

    Article  Google Scholar 

  7. Haberland, B., Derakhshan, F., Grob-Lipski, H., Klotsche, R., Rehm, W., Schefczik, P., et al. (2013). Radio base stations in the cloud. Journal of Bell Labs Technical, 18(1), 129–153.

    Article  Google Scholar 

  8. Wang, X., Chen, M., Kwon, T. T., Yang, L. T., & Leung, V. C. M. (2013). Amescloud: A framework of adaptive mobile video streaming and efficient social video sharing in the clouds. IEEE Transactions on Multimedia, 15(4), 811–820.

    Article  Google Scholar 

  9. Lei, X., Liao, X., Huang, T., Li, H., & Hu, C. (2013). Outsourcing large matrix inversion computation to a public cloud. IEEE Transactions on Cloud Computing, 1(1), 78–87.

    Google Scholar 

  10. Kansal, A., Zhao, F., Liu, J., Kothari, N., & Bhattacharya, A. (2010). Virtual machine power metering and provisioning. In Proceedings of the ACM symposium on cloud computing. Association for Computing Machinery.

  11. Kansal, A., & Zhao, F. (2008). Fine-grained energy profiling for power-aware application design. In Proceedings of first workshop on hot topics in measurement and modeling of computer systems (HotMetrics08) at ACM sigmetrics. Association for Computing Machinery, Inc., Annapolis, MD, USA.

  12. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of mimo and cooperative mimo techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  13. Flinn, J., Park, S.Y., & Satyanarayanan, M. (2002). Balancing performance, energy, and quality in pervasive computing. In Proceedings of the 22nd international conference on distributed computing systems, pp. 217–226.

  14. Chouhan, S., Bose, R., & Balakrishnan, M. (2009). Integrated energy analysis of error correcting codes and modulation for energy efficient wireless sensor nodes. IEEE Transactions on Wireless Communications, 8(10), 5348–5355.

    Article  Google Scholar 

  15. Dai, M., Lu, Z., Shen, D., Wang, H., Chen, B., Lin, X., et al. (2016) Design of (4, 8) Binary code with MDS and zigzag-decodable property. Wireless Personal Communications, 89(1), 1–13.

    Article  Google Scholar 

  16. Leung, S.O., Chan, K.L., & Fung, P.W. (1993). Compression techniques for still image and motion video. Proceedings of IEEE region 10 conference on computer, communication, control and power engineering, Vol. 3.

  17. Wallace, G. (1992). The jpeg still picture compression standard. IEEE Transactions on Consumer Electronics, 38(1), 18–199.

    Article  Google Scholar 

  18. Myung, H. G., Lim, J., & Goodman, D. J. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1(3), xvii–xxxiv.

  19. Mittal, A., Bose, R., & Shevgaonkar, R. (2014). Power analysis of lte system for uplink scenario. Proceedings of twentieth national conference on communications (NCC), pp. 1–4.

  20. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  21. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Bose, R. (2008). Information theory, coding and cryptography (2nd ed.). New Delhi: Tata McGraw-Hill Education.

    Google Scholar 

  23. Pun, T. (1980). A new method for grey-level picture thresholding using the entropy of the histogram. Signal Processing, 2(3), 223–237.

    Article  Google Scholar 

  24. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(4), 623–656.

    Article  MathSciNet  MATH  Google Scholar 

  25. Image Databases. (2015). http://imageprocessingplace.com.

  26. Imari, M. A., Xiao, P., Imran, M. A., & Tafazolli, R. (2013). Low complexity subcarrier and power allocation algorithm for uplink ofdma systems. Eurasip Journal on Wireless Communications and Networking, 2013(1), 1–6.

    Article  Google Scholar 

  27. Mehrnia, A., & Daneshrad, B. (2004). Minimizing power consumption and complexity in a programmable transmit filter bank for ofdm. In Proceedings of the 2004 international symposium on low power electronics and design. ISLPED ’04, pp. 230–235.

  28. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). Cambridge: The MIT Press.

    MATH  Google Scholar 

  29. Cho, N. I., & Lee, S. U. (1991). Fast algorithm and implementation of 2-d discrete cosine transform. IEEE Transactions on Circuits and Systems, 38(3), 297–305.

    Article  Google Scholar 

  30. Hasan, M., Nur, K. M., & Noor, T. B. (2012). Computational complexity reduction of jpeg images. International Journal of Scientific & Technology Research, 1(4), 72–75.

    Google Scholar 

  31. Grosse, H. J., Varley, M., Terrell, T., & Chan, Y. (1997). Hardware implementation of versatile zigzag-reordering algorithm for adaptive jpeg-like image compression schemes. In Proceedings of the sixth international conference on image processing and its applications (Vol. 1, pp. 184–188).

  32. Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40, 1098–1101.

    Article  MATH  Google Scholar 

  33. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  34. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing principles, algorithms, and applications (3rd ed.). Upper Saddle River, NJ: Prentice-Hall International, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Kundu, C., Bose, R. et al. Entropy Based Image Segmentation for Energy Efficient LTE System with Cloud. Wireless Pers Commun 92, 1145–1162 (2017). https://doi.org/10.1007/s11277-016-3598-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3598-9

Keywords

Navigation