Skip to main content
Log in

Particle Swarm Optimization Aided Serial Acquisition in Distributed OSCFAR and CMLD for DS-CDMA Systems in Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2016

Abstract

In this paper, adaptive serial acquisition schemes are proposed using threshold optimization in Multisensor data fusion for mobile communication systems in frequency selective Rayleigh fading channel. Two distributed adaptive detectors based on ordered statistics constant false alarm rate (OSCFAR) and censored mean level detector (CMLD) are used. For threshold optimization, the Particle Swarm Optimization (PSO) with linearly decreasing strategy is suggested, employing two logical fusion rules to enhance the serial-search in a multipath environment. The acquisition and detection performances are investigated under different system parameters and channel condition, namely the number of distributed sensors, the partial correlation length, the number of resolvable path and the effect of fading. Simulation results shown the robustness of the proposed distributed adaptive acquisition CMLD processor using PSO over the one based on OSCFAR. Moreover, the benefit of proposed schemes over adaptive acquisition ones using one antenna is also investigated by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

PSO:

Particle swarm optimization

CMLD:

Censoring mean level detector

OSCFAR:

Order statistic constant false alarm rate

OSAP:

Order statistic acquisition processor

AAP:

Adaptive acquisition processor

SOCFAR:

Smallest of constant false alarm rate

GOCFAR:

Greatest of constant false alarm rate

ACAP:

Automatic censoring acquisition processor

CACFAR:

Cell averaging constant false alarm rate

FAHAP:

Fuzzy adaptive hybrid acquisition processor

MIP:

Multipath intensity profile

MGF:

Moment generating function

AWGN:

Additive white Gaussian noise

SNR:

Signal to noise ratio

pdf:

Probability density function

Res:

The residue

BPSK:

Binary phase shift keying

FIR:

Finite impulse response

DS-CDMA:

Discrete spreading code division multiple access

References

  1. Polydoros, A., & Weber, C. L. (1984). A unified approach to serial search spread spectrum code acquisition-part 1: General theory. IEEE Transaction on Communication, 32(5), 550–560.

    Article  Google Scholar 

  2. Rick, R. R., & Milstein, L. B. (1997). Parallel acquisition of spread-spectrum signals with antenna diversity. IEEE Transaction on Communication, 45(8), 903–905.

    Article  Google Scholar 

  3. Zhuang, W. (1996). Noncoherent hybrid parallel PN code acquisition for CDMA mobile communications. IEEE Transaction on Vehicular Technology, 45(11), 643–656.

    Article  Google Scholar 

  4. Povey, G. J. R. (1998). Spread spectrum PN code acquisition using hybrid correlator architectures. Wireless Personal Communications, 8(2), 151–164.

    Article  Google Scholar 

  5. Kang, B. J., & Lee, I. K. (2003). A performance comparison of code acquisition techniques in DS-CDMA System. Wireless Personal Communications, 25, 163–176.

    Article  Google Scholar 

  6. Kim, C. J., et al. (1998). Adaptive acquisition of PN sequences for DS/SS communications. IEEE Transaction on Communication, 46(8), 993–996.

    Article  Google Scholar 

  7. Aissaoui, A., et al. (2008). Adaptive pseudo-noise code acquisition scheme using automatic censoring for DS/SS communication in frequency-selective Rayleigh fading channel. IET Communications, 2(2), 359–365.

    Article  Google Scholar 

  8. Aissaoui, A., et al. (2009). A rapid adaptive PN code acquisition with antenna diversity for DS-CDMA communication. In ACTEA international conference (pp. 208–213). Lebanon. doi:10.1109/ACTEA.2009.5227908.

  9. Hacini, L., et al. (2007). Hybrid acquisition schemes of PN codes using order statistics based detection and antenna diversity. In Waveform diversity and design. Conference, IEEE (pp. 42–45). doi:10.1109/WDDC.2007.4339376.

  10. Oh, H. S., et al. (2002). Adaptive hybrid PN code acquisition with antenna diversity in DS-CDMA systems. IEICE Transaction on Communication, E85-B(4), 716–722.

    Google Scholar 

  11. Yang, L. L., & Hanzo, L. (2001). Serial acquisition of DS-CDMA signals in multipath fading mobile channels. IEEE Transaction on Vehicular Technology, 50(2), 617–628.

    Article  Google Scholar 

  12. Proakis, J. G. (1997). Digital communications (3rd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  13. Kwang, O. S., & Lee, Ed. (2001). Utilization of multipath for spread-spectrum code acquisition in frequency-selective Rayleigh fading channels. IEEE Transaction on Communication, 49(4), 734–743.

    Article  MATH  Google Scholar 

  14. Ghandhi, P. P., & Kassam, S. A. (1988). Analysis of CFAR processors in nonhomogeneous background. IEEE Transaction on Aerospace Electronic System, 24(4), 427–445.

    Article  Google Scholar 

  15. Hou, X. Y., et al. (1987). Direct evaluation of radar detection probabilities. IEEE Transaction on Aerospace Electronic System, 23(7), 418–423.

    Article  Google Scholar 

  16. Laroussi, T., & Barkat, M. (2006). A performance comparison of two time diversity systems using cmld-cfar detection for partially correlated Chi square targets and multiple target situations. In EUSIPCO (pp. 1–5). Florence, Italy.

  17. Herbert, A., David, H., & Nagaraja, N. (2003). Order statistics. Series in probability and statistics (3rd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  18. Barkat, M., & Varshney, P. K. (1989). Decentralized CFAR signal detection. IEEE Transaction on Aerospace Electronic System AES, 25(2), 141–149.

    Article  Google Scholar 

  19. Üner, M. K., & Varshney, P. K. (1996). Distributed CFAR detection in homogeneous and nonhomogeneous backgrounds. IEEE Transactions on Aerospace and Electronic Systems, 32(1), 84–97.

    Article  Google Scholar 

  20. Abdou, L., & Soltani, F. (2008). OS-CFAR and CMLD threshold optimization in distributed systems using evolutionary strategies. Signal, Image and Video Processing, 2, 155–167.

    Article  Google Scholar 

  21. Poli, R., et al. (2007). Particle swarm optimization. An overview. Swarm Intelligence, 1, 33–57.

    Article  Google Scholar 

  22. Pinto, A. (2011). The particle swarm optimization algorithm, decision support. http://paginas.fe.up.pt/~mac/ensino/docs/DS20102011/Presentations/PopulationalMetaheuristics/PSO__AndryPinto_InesDomingues_LuisRocha_HugoAlves_SusanaCruz.pptx.

  23. Perez, R. E., & Behdinan, K. (2007). Particle swarm approach for structure design optimization. Computers and Structures, 85, 1579–1588.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Zohra Doudou.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11277-016-3724-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doudou, F.Z., Djebbari, A. Particle Swarm Optimization Aided Serial Acquisition in Distributed OSCFAR and CMLD for DS-CDMA Systems in Fading Channels. Wireless Pers Commun 94, 621–640 (2017). https://doi.org/10.1007/s11277-016-3640-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3640-y

Keywords

Navigation