Skip to main content

Advertisement

Log in

Energy-Efficient Cooperative Spectrum Sensing with Quality-of-Service Provisioning

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy efficient communication techniques have attracted a lot of attention due to operational device requirements and global environment concerns. In this paper, we investigate energy efficient cooperative spectrum sensing (CSS) in cognitive radio (CR) networks with Quality-of-Service (QoS) provisioning. The energy efficiency (EE) of the CR network is defined as the ratio of the average spectrum efficiency over the average power consumption. To maximize the EE, both the sensing time and secondary user’s (SU’s) transmit power are optimized. We propose mathematical reformulation of the problem in a way that allows uni-modality to be used to confirm the existence of optimal solution, and Algorithm 1 is proposed to solve the optimization problem. Then, an efficient Algorithm 2 is proposed to maximize the EE under the constraint that the spectrum efficiency (SE) requirement is satisfied. Computer simulations show that, in order to improve the EE of the CR network, joint optimization of sensing time and SU’s transmit power should be performed. And different QoS requirements require different system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dahlman, E., Mildh, G., Parkvall, S., Peisa, J., Sachs, J., Selén, Y., et al. (2014). 5G wireless access: Requirement and realization. IEEE Communications Magazine, 52, 42–47.

    Article  Google Scholar 

  2. Yuan, Y., & Zhu, L. (2014). Application scenarios and enabling technologies of 5G. China Communications, 11(11), 69–79.

    Article  Google Scholar 

  3. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52, 122–130.

    Article  Google Scholar 

  4. Bogucka, H., Kryszkiewicz, P., & Pliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.

    Article  Google Scholar 

  5. Li, Q., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.

    Article  Google Scholar 

  6. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., et al. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE Vehicular Technology Magazine, 8(3), 47–53.

    Article  Google Scholar 

  7. Huang, X., Han, T., & Ansari, N. (2015). On green energy powered cognitive radio networks. IEEE Communications Surveys & Tutorials., 17(2), 827–842.

    Article  Google Scholar 

  8. Chih-Lin, L., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52, 66–73.

    Google Scholar 

  9. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.

    Article  Google Scholar 

  10. Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2015). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.

    Article  Google Scholar 

  11. Wu, G., Yang, C., Li, S., & Li, G. Y. (2015). Recent advances in energy-efficient networks and their applications in 5G systems. IEEE Communications Magazine, 22(2), 145–151.

    Article  Google Scholar 

  12. IMT-2020 (5G). Promotion group. White paper on 5G vision and requirements. http://www.imt-2020.cn/en/documents/listByQuery?currentPage=1&content=.

  13. Liang, Y.-C., Chen, K.-C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  14. Usman, M., & Koo, I. (2014). Access strategy for hybrid underlay–overlay cognitive radios with energy harvesting. IEEE Sensors Journal, 14(9), 3164–3173.

    Article  Google Scholar 

  15. Peh, E., Liang, Y.-C., Guan, Y. L., & Pei, Y. (2011). Energy-efficient cooperative spectrum sensing in cognitive radio networks. in Proceedings of IEEE global communications conference, pp. 1–5.

  16. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.

    Article  Google Scholar 

  17. Shi, Z., Teh, K. C., & Li, K. H. (2013). Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communications Letters, 17(3), 565–568.

    Article  Google Scholar 

  18. Hu, H., Xu, Y. Y., & Li, N. (2013). Energy-efficient cooperative spectrum sensing with QoS guarantee in cognitive radio networks. IEICE Transactions on Communications, E96B(5), 1222–1225.

    Article  Google Scholar 

  19. Hu, H., Zhang, H., Yu, H., Chen, Y., & Jafarian, J. (2015). Energy-efficient design of channel sensing in cognitive radio networks. Computers & Electrical Engineering, 42, 207–220.

    Article  Google Scholar 

  20. Liang, Y.-C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  21. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  22. Gao, Y., Xu, W., Yang, K., Niu, K., & Lin, J. (2013). Energy-efficient transmission with cooperative spectrum sensing in cognitive radio networks. in Proceedings of IEEE wireless communications and networking conference, pp. 7–12.

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61671475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhang, H., Gao, W. et al. Energy-Efficient Cooperative Spectrum Sensing with Quality-of-Service Provisioning. Wireless Pers Commun 94, 1427–1442 (2017). https://doi.org/10.1007/s11277-016-3690-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3690-1

Keywords

Navigation