Skip to main content
Log in

Robust Power Allocation for OFDM Based Underlay Cognitive Radio Networks with Channel Uncertainties

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In consideration of all possible channel uncertainties without the assumption of perfect channel state information (CSI), a robust power allocation algorithm for underlay orthogonal frequency division multiple cognitive radio networks is presented. This algorithm can assign transmission power of each secondary user (SU) on each sub-carrier based on total transmission power minimization of SUs under the constraints corresponding to signal-to-interference-noise ratio of SUs and the interference power constraint to guarantee the quality of service of primary users (PUs). In addition, the CSI errors are assumed to be bounded with ellipsoid and interval sets. Through the worst case approach, the original optimization problem is converted into a convex one solved by Lagrange dual decomposition method. The proposed robust algorithm provides a trade-off between robustness and system performance. Simulation results prove that the suboptimal solution can achieve a satisfactory performance for both SUs and PUs at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Mitola, J, I. I. I., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  4. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  5. Kang, X., Garg, H. K., Liang, Y. C., & Zhang, R. (2010). Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE Transactions on Wireless Communications, 9(6), 2066–2075.

    Article  Google Scholar 

  6. Wong, I. C., & Evans, B. L. (2008). Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates. IEEE Transactions on Wireless Communications, 7(3), 962–971.

    Article  Google Scholar 

  7. Mazloumi, L., Shahtalebi, K., & Sabahi, M. F. (2015). A simple method for throughput maximization of OFDMA based CR networks. Wireless Personal Communications,. doi:10.1007/s11277-015-2875-3.

    Google Scholar 

  8. Wang, Y., Xu, W., Yang, K., & Lin, J. (2012). Optimal energy-efficient power allocation for OFDM-based cognitive radio networks. IEEE Communications Letters, 16(9), 1420–1423.

    Article  Google Scholar 

  9. Marques, A. G., Lopez-Ramos, L. M., Giannakis, G. B., & Ramos, J. (2012). Resource allocation for interweave and underlay CRs under probability-of-interference constraints. IEEE Journal on Selected Areas in Communications, 30(10), 1922–1933.

    Article  Google Scholar 

  10. Dashti, M., Azmi, P., Navaie, K., & Razavizadeh, S. M. (2013). Ergodic sum rate maximization for underlay spectrum sharing with heterogeneous traffic. Wireless Personal Communications, 71(1), 589–610.

    Article  Google Scholar 

  11. Xu, Y., & Zhao, X. (2014). Robust rate maximization for OFDM-based cognitive radio networks. In IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1195–1198).

  12. Soltani, N. Y., Kim, S. J., & Giannakis, G. B. (2013). Chance-constrained optimization of OFDMA cognitive radio uplinks. IEEE Transactions on Wireless Communications, 12(3), 1098–1107.

    Article  Google Scholar 

  13. Parsaeefard, S., & Sharafat, A. R. (2013). Robust distributed power control in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(4), 609–620.

    Article  Google Scholar 

  14. Parsaeefard, S., & Sharafat, A. R. (2012). Robust worst-case interference control in underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 61(8), 3731–3745.

    Article  Google Scholar 

  15. Jun, P., Zhen, H., Zhengfa, Z., Wentao, Y., & Weirong, L. (2013). A worst-case robust distributed power allocation in OFDM-based cognitive radio networks. In 32nd Chinese on Control Conference (CCC) (pp. 6422–6427).

  16. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  MathSciNet  Google Scholar 

  17. Xu, Y., Zhao, X., & Liang, Y.-C. (2015). Robust power control and beamforming cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials17(4), 1834–1857.

    Article  Google Scholar 

  18. Reemtsen, R., & Ruckmann, J. J. (1998). Semi-infinite programming. New York: Springer.

    Book  MATH  Google Scholar 

  19. Bhatia, R., & Davis, C. (1995). A Cauchy-Schwarz inequality for operators with applications. Linear Algebra and its Applications, 223–224(3), 119–129.

    Article  MathSciNet  MATH  Google Scholar 

  20. Palomar, D. P., & Chiang, M. (2006). A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications, 24(8), 1439–1451.

    Article  Google Scholar 

  21. Eriksson, K., Estep, D., & Johnson, C. (2004). Lipschitz continuity. Berlin: Springer.

    Book  Google Scholar 

  22. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.

    Book  MATH  Google Scholar 

  23. Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Boston: Boston press.

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant Number (61571209). The authors thank the editors and the anonymous reviewers, whose invaluable comments helped improve the presentation of this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhao, X. & Xu, Y. Robust Power Allocation for OFDM Based Underlay Cognitive Radio Networks with Channel Uncertainties. Wireless Pers Commun 94, 3531–3547 (2017). https://doi.org/10.1007/s11277-016-3789-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3789-4

Keywords

Navigation