Skip to main content
Log in

The Real-Time Detection and Prediction Method for Ballistic Aircraft Based on Distributed Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Space-based detection satellite and remote detection phased array radar are important parts of space security detection system. The aircraft’s detection, tracking and parameter estimation, trajectory prediction with detection satellite and radar are primary problems to be solved in the early detection of ballistic aircraft. This paper mainly studies the simulation of aircraft’s trajectory in early detection phase, the establishment of a dynamic model of the active segment and trajectory simulation and the simulation to generate a multi-level trajectory vehicle’s trajectory data based on the estimation of the key parameters of the aircraft in the single star observing conditions, the trajectory forecast and radar observation conditions for aircraft tracking. Due to the incompleteness of measurements for the single-satellite detection and the bad convergence, this paper proposes a fired at the focal plane method based on the priori template, establish a complete formula derivation algorithm processes, establish a priori standard ballistic template with the simulation trajectory data and the validity of the method using Monte Carlo simulation. Based on the MATLAB graphical user interface, it builds a simulation platform of ballistics aircraft detection probe which can effectively complete the early detection of scene simulation and demonstration. The simulation results show that the method can solve the bad convergence problems of the detection of a single star and it suits for the application to the ballistic vehicle’s key point estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Steven, M. D., Malthus, T. J., Baret, F., Xu, H., & Chopping, M. J. (2003). Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 88, 412–422.

    Article  Google Scholar 

  2. Yang, X., & Lo, C. (2000). Relative radiometric normalization performance for change detection from multi-date satellite images. Photogrammetric Engineering and Remote Sensing, 66, 967–980.

    Google Scholar 

  3. Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1035.

    Google Scholar 

  4. Albright, T. P., & Ode, D. J. (2011). Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data. Hydrobiologia, 661, 469–474.

    Article  Google Scholar 

  5. Silva, T. S. F., Costa, M. P. F., & Melack, J. M. (2010). Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: A remote sensing approach. Remote Sensing of Environment, 114, 1998–2010.

    Article  Google Scholar 

  6. Tian, Y. Q., Yu, Q., Zimmerman, M. J., Flint, S., & Waldron, M. C. (2010). Differentiating aquatic plant communities in a entropic river using hyperspectral and multispectral remote sensing. Freshwater Biology, 55, 1658–1673.

    Google Scholar 

  7. Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment, 140, 131–145.

    Article  Google Scholar 

  8. Fitzgerald, R. J. (1974). On reentry vehicle tracking in various coordinate systems. IEEE Transactions on Automatic Control, AC-19, 581–582.

    Article  Google Scholar 

  9. Farina, A., Ristic, B., & Benvenuti, D. (2002). Tracking a ballistic target: Comparison of several filters. IEEE Transactions on Aerospace and Electronic Systems, 38(3), 1916–1924.

    Article  Google Scholar 

  10. Hough, M. E. (1999). Improved performance of recursive tracking filters using batch initialization and process noise adaptation. AIAA Journal of Guidance, Control and Dynamics, 22(5), 675–681.

    Article  Google Scholar 

  11. Chen, H., Bar-Shalom, Y., Pattipati, K. R., & Kirubarajan, T. (2003). MDL approach for multiple low observable track initiation. IEEE Transactions on Aerospace and Electronic Systems, 39(3), 862–882.

    Article  Google Scholar 

  12. Luo, X., Yang, X., Wang, W., Chang, X., Wang, X., & Zhao, Z. (2016). A novel hidden danger prediction method in cloud-based intelligent industrial production management using timeliness managing extreme learning machine. China Communications, 13(7), 74–82.

    Article  Google Scholar 

  13. Chang, C. B., Whiting, R. H., & Athans, M. (1977). On the state and parameter estimation for maneuvering reentry vehicles. IEEE Transactions Automatic Control, 22(2), 99–105.

    Article  Google Scholar 

  14. Cooperman, R. L. (2002) Tactical ballistic missile tracking using the interacting multiple model algorithm. In Proceedings of the 2002 International Conference on Information Fusion, Annapolis, MD, pp. 824–831.

  15. Farina, A., Del Gaudio, M. G., D’Elia, U., Immediata, S., Ortenzi, L., Timmoneri, L., et al. (2004) Detection and tracking of ballistic target. In Proceedings of the 2004 IEEE international radar conference, pp. 450–456.

  16. Qiu, Z., Ruan, J., Huang, D., Pu, Z., & Shu, S. (2015). A prediction method for breakdown voltage of typical air gaps based on electric field features and support vector machine. IEEE Transactions on Dielectrics and Electrical Insulation, 22(4), 2125–2135.

    Article  Google Scholar 

  17. Gallais, P. (2007). Atmospheric re-entry vehicle mechanics. New York: Springer.

    Google Scholar 

  18. Li, X. R., & Bar-Shalom, Y. (1994). A recursive multiple model approach to noise identification. IEEE Transactions of Aerospace and Electronic Systems, 30(3), 671–684.

    Article  Google Scholar 

  19. Sarikaya, R., & Buyuktosunoglu, A. (2010). A unified prediction method for predicting program behavior. IEEE Transactions on Computers, 59(2), 272–282.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sivananthan, S., Kirubarajan, T., & Bar-Shalom, Y. (2001). Radar power multiplier for acquisition of low observables using an ESA radar. IEEE Transactions on Aerospace and Electronic Systems, 37(2), 401–418.

    Article  Google Scholar 

  21. Ma, J., Zhang, G., & Lu, J. (2012). A method for multiple periodic factor prediction problems using complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(1), 32–45.

    Article  Google Scholar 

  22. Sharma, Jayant, Stokes, Grant H., von Braun, Curt, et al. (2002). Toward operational space-based space surveillance. Lincoln Laboratory Journal, 13(2), 309–313.

    Google Scholar 

  23. Danis, N. J. (1993). Space-based tactical ballistic missile launch parameter estimation. IEEE Transaction on Aerospace and Electronic Systems, 29(2), 413–424.

    Article  Google Scholar 

  24. Shihui, W., & Longxu, X. (2008). Research on ballistic missile laser SIMU error propagation mechanism. Journal of Systems Engineering and Electronics, 19(2), 356–362.

    Article  MATH  Google Scholar 

  25. Yong-jie, W. A. N. G. (2008). Research on probabilistic method of flight impact point for trouble missile with Monte Carlo method. Systems Engineering and Electronics, 30(4), 682–685.

    Google Scholar 

  26. Kantola, M., Perttunen, M., Leppanen, T., Collin, J., & Riekki, J. (2010). Context awareness for GPS-enabled phones. In Proceedings of ION technical meeting, Manassas, VA, USA, pp. 117–124.

  27. Kavzoglu, T., & Mather, P. M. (2002). The role of feature section in artificial neural network applications. International Journal of Remote Sensing, 23, 2919–2937.

    Article  Google Scholar 

  28. Chen, L., & Fang, J. (2014). A hybrid prediction method for bridging GPS outages in high-precision POS application. IEEE Transactions on Instrumentation and Measurement, 63(6), 1656–1665.

    Article  Google Scholar 

  29. Luo, H., Li, W., & He, X. (2015). Online high-power P-i-N diode chip temperature extraction and prediction method with maximum recovery current di/dt. IEEE Transactions on Power Electronics, 30(5), 2395–2404.

    Article  Google Scholar 

  30. Gan, Y., Jiang, C., Beaulieu, N. C., Wang, J., & Ren, Yong. (2016). Secure collaborative spectrum sensing: A peer-prediction method. IEEE Transactions on Communications, 64(10), 4283–4294.

    Google Scholar 

  31. Turley, M. D. E. (2008). Signal processing techniques for maritime surveillance with skywave radar. In Proceedings of 2008 IEEE radar conference. Adelaide: IEEE Press, pp. 241–246.

  32. Tang, Y. J. (2004) Ocean clutter suppression using one-class SVM. IEEE workshop on machine learning for signal processing.

  33. You, R.-J., & Lin, B.-C. (2011). A quality prediction method for building model reconstruction using LiDAR data and topographic maps. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3471–3480.

    Article  Google Scholar 

  34. Chen, L., & Fang, J. (2014). A hybrid prediction method for bridging GPS outages in high-precision POS application. IEEE Transactions on Instrumentation and Measurement, 63(6), 1656–1665.

    Article  Google Scholar 

  35. Paunovic, D. S., Stojanovic, Z. D., & Stojanovic, I. S. (1984). Choice of a suitable method for the prediction of the field strength in planning land mobile radio systems. IEEE Transactions on Vehicular Technology, 33(3), 259–265.

    Article  Google Scholar 

  36. Houminer, Z., Russell, C. J., Dyson, P. L., et al. (1996). Study of sporadic-E clouds by backscatter radar. Annales Geophysicae, 14, 1060–1065.

    Article  Google Scholar 

  37. Zhao, J., Wang, W., Liu, Y., & Pedrycz, W. (2011). A two-stage online prediction method for a blast furnace gas system and its application. IEEE Transactions on Control Systems Technology, 19(3), 507–520.

    Article  Google Scholar 

  38. Wu, C. R., Lin, C. T., & Tsai, P. H. (2010). Evaluating business performance of wealth management banks. European Journal of Operational Research, 207(2), 971–979.

    Article  Google Scholar 

  39. Zaveri, M., Merchant, S. N., & Desai, U. B. (2007). Robust neural-network-based data association and multiple model-based tracking of multiple point targets. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews (S1094-6977), 37(3), 337–351.

    Article  Google Scholar 

  40. Liu, Y. H., Nie, Z. P., & Zhao, Z. Q. (2009). Cascaded approach for correcting ionospheric frequency modulation in HF sky-wave radars. Journal of University of Electronic Science and Technology of China, 38(1), 17–20.

    Google Scholar 

  41. Liu, S., Sheng, W., Zhang, X., et al. (2012) Digital generating scheme of composite discrete chaotic biphase coded signals. EICE 2012, Macau, China, pp. 105–109.

  42. Chen, H., & Chang, K. C. (2009). Novel nonlinear filtering and prediction method for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 45(1), 237–249.

    Article  Google Scholar 

  43. Zhang, X. H., Sheng, W., & Liu, S. H. (2013). Suppression of sea clutter of skywave radar based on AR model. Measurement technology and its application Part 1. Applied Mechanics and Materials, 239, 382–386.

    Article  Google Scholar 

  44. Conte, E., De, M. A., & Galdi, C. (2004). Statistical analysis of real clutter at different range resolutions. IEEE Transactions on Aerospace and Electronic Systems, 40(3), 903–918.

    Article  Google Scholar 

  45. Weeks, D. J. (2005). Small satellites and the DARPA/Air Force FALCON program. Acta Astronautica, 57(2), 469–477.

    Article  Google Scholar 

  46. Gordon, N. (1997). A hybrid bootstrap filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 33(1), 353–358.

    Article  MathSciNet  Google Scholar 

  47. Sachs, G. (2005). Longitudinal long-term modes in super-And hypersonic flight. Journal of Guidance, Control and Dynamics, 28(3), 539–540.

    Article  Google Scholar 

  48. Boutayeb, M., Rafaralahy, H., & Darouach, M. (1997). Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Transactions on Automatic Control, 42(4), 581–586.

    Article  MathSciNet  MATH  Google Scholar 

  49. Wei, H., Bin, L. S., Jun, L., & Guo, W. Z. (2010). Effect of cavity flame holder configuration on combustion flow field performance of integrated hypersonic vehicle. Science China Technological Sciences, 53(10), 2725–2733.

    Article  Google Scholar 

  50. Mohan, A., Papageorgiou, C., & Poggio, T. (2001). Example-based object detection in images by components [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4), 349–351.

    Article  Google Scholar 

  51. Dalal, N., & Triggs, B. (2011). Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 886–887.

    Google Scholar 

  52. Marshall, L. A., & Bahm, C. (2005) Overview with results and lessons learned of the X-43A Mach 10 Flight. A collection of technical papers-13th AIAA/CIRA international space planes and hypersonic systems and technologies conference. Vol. 2, pp. 1237–1259.

  53. Wen, C. Y., Chou, S., & Liaw, J. (2012). Textural defect segmentation using a fourier-domain maximum likelihood estimation method. Textile Research Journal, 72(3), 253–254.

    Google Scholar 

  54. Huang, Y., & Chan, K. (2010). Texture decomposition by harmonics extraction from higher order statistics. IEEE Transactions on Image Processing, 13(1), 3–4.

    Google Scholar 

  55. Zhenjun, Z., Zhiguo, C., & Wenwu, W. (2011). Effects of hypersonic vehicle’s optical dome on infrared imaging. Optical Engineering, 50(9), 119–124.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Natural Science Foundation (No. 60773190, 60802002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejiang Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, H., Chen, F. et al. The Real-Time Detection and Prediction Method for Ballistic Aircraft Based on Distributed Sensor Networks. Wireless Pers Commun 95, 2049–2072 (2017). https://doi.org/10.1007/s11277-017-3957-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-3957-1

Keywords

Navigation