Skip to main content

Advertisement

Log in

Simultaneous Wireless Information and Power Transfer with Finite-Alphabet Inputs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Simultaneous wireless information and power transfer (SWIPT) is a promising solution to carry energy as well as information at the same time for wireless networks. In this paper, we consider a precoding matrix design for multiple-input multiple-output (MIMO) SWIPT systems with finite-alphabet inputs. The problem can be formulated as maximizing the mutual information given the energy level and the power constraint for achieving a so-called rate-energy region. The formulated problem is non-concave, which can be reduced to a convex power allocation problem by the proposed gradient-descend design of the precoding matrix. Several rate-energy regions can be achieved by trading off between the information rate and the harvested energy with different schemes. Simulation results indicate that the proposed scheme with finite-alphabet inputs provides significant performance gain over existing schemes with Gaussian inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.

    Article  Google Scholar 

  2. Liu, Y., & Wang, X. (2016). Information and energy cooperation in OFDM relaying: Protocols and optimization. IEEE Transactions on Vehicular Technology, 65(7), 5088–5098.

    Article  Google Scholar 

  3. Zhang, M., Liu, Y., & Zhang, R. (2016). Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Transactions on Wireless Communications, 15(4), 3085–3096.

    Article  Google Scholar 

  4. Zhang, M., & Liu, Y. (2016). Energy harvesting for physical-layer security in OFDMA networks. IEEE Transactions on Information Forensics and Security, 11(1), 154–162.

    Article  Google Scholar 

  5. Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.

    Article  Google Scholar 

  6. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, H. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  7. Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.

    Article  Google Scholar 

  8. Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.

    Article  Google Scholar 

  9. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Article  Google Scholar 

  10. Khandaker, M. R. A., & Wong, K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.

    Article  Google Scholar 

  11. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., & Huang, K. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.

    Article  Google Scholar 

  12. Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.

    Article  Google Scholar 

  13. Sun, Q., Zhu, G., Shen, C., Li, X., & Zhong, Z. (2014). Joint beamforming design and time allocation for wireless powered communication networks. IEEE Communications Letters, 18(10), 1783–1786.

    Article  Google Scholar 

  14. Lee, H., Lee, K. J., Kong, H. B., & Lee, I. (2016). Sum-rate maximization for multiuser MIMO wireless powered communication networks. IEEE Transactions on Vehicular Technology, 65(11), 9420–9424.

    Article  Google Scholar 

  15. Lozano, A., Tulino, A., & Verd, S. (2006). Optimum power allocation for parallel Gaussian channels with arbitrary input distributions. IEEE Transactions on Information Theory, 52(7), 3033–3051.

    Article  MathSciNet  MATH  Google Scholar 

  16. Xiao, C., & Zheng, Y. R. (2008). On the mutual information and power allocation for vector Gaussian channels with finite discrete inputs. In Proceeding of the GLOBECOM, 2008 (pp. 1–5), Nov 2008.

  17. Xiao, C., Zheng, Y. R., & Ding, Z. (2011). Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels. IEEE Transactions on Signal Processing, 59(7), 3301–3314.

    Article  MathSciNet  Google Scholar 

  18. Zeng, W., Xiao, C., & Lu, J. (2012). A low-complexity design of linear precoding for MIMO channels with finite-alphabet inputs. IEEE Wireless Communications Letters, 1(1), 38–41.

    Article  Google Scholar 

  19. Zeng, W., Zheng, Y. R., & Schober, R. (2015). Online resource allocation for energy harvesting downlink multiuser systems: Precoding with modulation, coding rate, and subchannel selection. IEEE Transactions on Wireless Communications, 14(10), 5780–5794.

    Article  Google Scholar 

  20. Zeng, W., Xiao, C., Wang, M., & Lu, J. (2012). Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI. IEEE Transactions on Signal Processing, 60(6), 3134–3148.

    Article  MathSciNet  Google Scholar 

  21. Wu, Y., Wen, C. K., Xiao, C., Gao, X., & Schober, R. (2015). Linear precoding for the MIMO multiple access channel with finite alphabet inputs and statistical CSI. IEEE Transactions on Wireless Communications, 14(2), 983–997.

    Article  Google Scholar 

  22. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  23. Zeng, W., Zheng, Y. R., & Xiao, C. (2016). Online precoding for energy harvesting transmitter with finite-alphabet inputs and statistical CSI. IEEE Transactions on Vehicular Technology, 65(7), 5287–5302.

    Article  Google Scholar 

  24. Zheng, Y. R., Wang, M., Zeng, W., & Xiao, C. (2013). Practical linear precoder design for finite alphabet multiple-input multiple-output orthogonal frequency division multiplexing with experiment validation. IET Communications, 7(9), 836–847.

    Article  Google Scholar 

  25. Magnus, J., & Neudecker, H. (2007). Matrix differential calculus with applications in statistics and econometrics (3rd ed.). New York: Wiley.

    MATH  Google Scholar 

  26. Cover, T. M., & Thomas, J. A. (1990). Elements of information theory. New York: Wiley.

    MATH  Google Scholar 

  27. Xin, Y., Wang, Z., & Giannakis, G. B. (2003). Space-time diversity systems based on linear constellation precoding. IEEE Transactions on Wireless Communicaitons, 2(2), 294–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, F., Huang, X., Liu, Y. et al. Simultaneous Wireless Information and Power Transfer with Finite-Alphabet Inputs. Wireless Pers Commun 96, 655–668 (2017). https://doi.org/10.1007/s11277-017-4194-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4194-3

Keywords

Navigation