Skip to main content
Log in

Low Power Consuming 1 KB (32 × 32) Memory Array Using Compact 7T SRAM Cell

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Rapid increase in technology is showing a great perception in assessing the complexity of design that can be integrated on a single chip dramatically. Minimum feature sizes, low power consumption, minimum cost and high performance have become the key characteristics of any electronic component. All these factors have plunged the designers into the sub micron space which brings the leakage parameters into forefront. Many electronic components especially digital designs are designed for the storage of data, highlighting the use of memory. So this paper is dedicated to the storage of data by designing 1 KB memory using SRAM. The cell used in implementing the array structure is 7T SRAM with the minimum leakage current 20.16 pA and average delay of 21 ns. This has been done in the form of an array which is a two dimensional structure of basic unit cell SRAM. The array formed in this paper is a squared array of 32 × 32. The other supporting devices in executing this array are address decoder, precharge circuit, write driver circuit and sense amplifiers. The verification of working of 1 KB SRAM array has been done in cadence virtuoso tool in 45 nm technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sabena, D., Sterpone, L., Scholzel, M., Koal, T., Vierhaus, H. T., Wong, S., et al. (2014). Reconfigurable high performance architectures: How much are they ready for safety-critical applications? In Proceedings of 19th IEEE European test symposium (ETS). Paderborn, Germany.

  2. Saha, D., & Sarkar, S. K. (2014). High-speed reduced-leakage SRAM memory cell design techniques for low-power 65 nm FD-SOI/SON CMOS technology. Microelectronics Journal, 45(7), 848–856.

    Article  Google Scholar 

  3. Kim, N., Flautner, K., Blaauw, D., & Mudge, T. (2004). Circuit and microarchitectural techniques for reducing cache leakage power. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(2), 167–184.

    Article  Google Scholar 

  4. Gavaskar, K., & Priya, S. (2013). Design of efficient low power stable 4-bit memory cell. In ICIIIOSP international journal of computer applications international conference on innovations in intelligent instrumentation, optimization and signal processing (pp. 0975–8887).

  5. Wen, L., Li, Z., & Li, Y. (2013). Single ended, robust 8T SRAM cell for low-voltage operation. Microelectronics Journal, 44, 718–728.

    Article  Google Scholar 

  6. Calhoun, B. H. & Chandrakasan, A. (2006). A 256 KB subthreshold SRAM using 65 nm CMOS. In Proceedings of international solid-state circuits conference (pp. 2592–2601).

  7. Bellerimath, P. S., & Banakar, R. M. (2013). Implementation of 16 × 16 SRAM memory array using 180 nm technology. IJCET International Journal of Current Engineering and Technology, 4, 2277–4106.

    Google Scholar 

  8. Akashe, S., & Sharma, S. (2013). High density and low leakage current based SRAM cell using 45 nm technology. International Journal of Electronics, 100(4), 536–552.

    Article  Google Scholar 

  9. Akashe, S., & Shrives, J. (2012). Impact of design parameter on SRAM bit cell. In IEEE international conference on advance computing and communication technologies.

  10. Wang, B., Zhou, J., & Kim, T. T. (2012). Maximization of SRAM energy efficiency using MTCMOS technology. In Proceeding of IEEE 4th Asia symposium on quality electronic design (Vol. 978-1, pp. 4673–2688).

  11. Khan, S., Hamdioui, S., Kukner, H., Raghavan, P., & Catthoor, F. (2013). Bias temperature instability analysis in SRAM decoder. In Proceedings of 18th IEEE European test symposium (ETS) (pp. 4673–6377).

  12. Jacob Baker, R., Li, H. W., & Boyce, D. E. (1998) CMOS circuit design, layout and simulation, 3rd edn. PHI.

  13. Evans, R. J., & Franzon, P. D. (1995). Energy consumption modeling and optimization for SRAM’s. IEEE Journal of Solid-State Circuits, 30(5), 571–579.

    Article  Google Scholar 

  14. Mishra, H. N., & Patel, Y. K. (2010). Design, simulation and characterization of memory cell array for low power SRAM using 90 nm CMOS technology. IEEE, 978-1, 4244–8542.

    Google Scholar 

  15. Grossae, E., Stucchi, M., Marx, K., et al. (2006). Read stability and write-ability analysis of SRAM cells for nanometer technologies. IEEE Journal of Solid-States Circuits, 41(11), 2577–2588.

    Article  Google Scholar 

  16. Hobson, R. (2007). A new single-ended SRAM cell with write-assist. In IEEE transaction on VLSI system (Vol. 15, No. 2, pp. 173–181).

  17. Mishra, S., Dubey, A., Tomar, S. S., & Akashe, S. (2012). Design and simulation of high level low power 7T SRAM cell using various process and circuit technology. In 2012 IEEE international conference on signal processing, computing and control (ISPCC). doi:10.1109/ISPCC.2012.6224371.

  18. Akashe, S., Shastri, M., & Sharma, S. (2012). Multi Vt 7T SRAM cell for high speed application at 45 nm technology. In Proceedings of AIP conference (Vol. 31, p. 1476).

  19. Alorda, B., Torrens, G., Bota, S., & Segura, J. (2011). 8T vs. 6T SRAM cell radiation robustness: A comparative analysis. Microelectronics Reliability, 51, 350–359.

    Article  Google Scholar 

  20. Weste, N., Harris, O., & Banerjee, A. (2006). CMOS VLSI design and systems perspective, 3rd edn. Pearson Publications.

  21. Garg, A., & Kim, T. T.-H. (2013). SRAM array structures for energy efficiency enhancement. IEEE Transactions on Circuits and System-II, 60(6), 351–355.

    Article  Google Scholar 

  22. Rabaey, J. M., Chandrakasan, A., & Nikolic, B. (2002). Digital integrated circuits: A design perspective. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  23. Cserveny, S., Sumanen, L., Masgonty, J. M., & Piguet, C. (2005). Locally switched and limited source-body bias and other leakage reduction techniques for a low-power embedded SRAM. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(10), 636–640.

    Article  Google Scholar 

  24. Pattanaik, M., Varaprasad, M. V., & Khan, F. R. (2010). Ground bounce noise reduction of low leakage 1-bit nano-CMOS based full adder cells for mobile applications. In International conference on electronic devices, systems and applications (ICEDSA) (pp. 31–36).

Download references

Acknowledgements

This work has been supported by ITM University Gwalior in collaboration with Cadence virtuoso Design System, Bangalore India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Akashe, S. Low Power Consuming 1 KB (32 × 32) Memory Array Using Compact 7T SRAM Cell. Wireless Pers Commun 96, 1099–1109 (2017). https://doi.org/10.1007/s11277-017-4226-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4226-z

Keywords

Navigation