Skip to main content
Log in

Average BER Performance of Orthogonal Space–Time Block Coding System with Antenna Selection Over Generalized ημ Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Generalized channel fading distributions such as κμ and ημ are well suited for modelling various fading channels as they fit well to the experimental data. This paper is concerned with the performance analysis of orthogonal space–time block-codes system using M-ary Phase shift keying/quadrature amplitude modulation with antenna selection over generalized ημ fading channel i.e., for non-line-of-sight applications. We derive the closed form expression of the average bit error rate by employing “moment generating function” based approach for different modulation schemes. Simulation results are finally presented to demonstrate the correctness of theoretical analysis by assuming different values for η and μ, where each value corresponds to different channels. The impact of actual number of antennas, i.e., number of antennas before antenna selection, were also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  2. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  3. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, W., & Xia, X. G. (2003). On space-time block codes from complex orthogonal designs. Springer Wireless Personal Communications, 25(1), 1–26.

    Article  Google Scholar 

  5. Hochwald, B. M., & Marzetta, T. L. (1999). Capacity of a mobile multiple antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45(1), 139–157.

    Article  MathSciNet  MATH  Google Scholar 

  6. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European transactions on telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  7. Bhashyam, S., Sabharwal, A., & Aazhang, B. (2002). Feedback gain in multiple antenna systems. IEEE Transactions on Communications, 50(5), 785–798.

    Article  Google Scholar 

  8. Yoo, T., & Goldsmith, A. J. (2004). Capacity of fading MIMO channels with channel estimation error. In IEEE International Conference on Communications, ICC’04, Vol. 2, pp. 808–813.

  9. Raju, M. S., Annavajjala, R., & Chockalingam, A. (2006). BER analysis of QAM on fading channels with transmit diversity. IEEE Transactions on Wireless Communications, 5(3), 481–486.

    Article  Google Scholar 

  10. Shin, H., & Lee, J. H. (2002). Exact symbol error probability of orthogonal space-time block codes. In IEEE Global Telecommunications Conference, GLOBECOM ‘02, pp. 1192–1201.

  11. Simon, M. K. (2001). Evaluation of average bit error probability for space time coding based on a simpler exact evaluation of pairwise error probability. Journal of Communication Networks, 3(3), 257–264.

    Article  Google Scholar 

  12. Taricco, G., & Biglieri, E. (2002). Exact pairwise error probability of space-time codes. IEEE Transactions on Information Theory, 48(2), 510–513.

    Article  MathSciNet  MATH  Google Scholar 

  13. Conti, A., Win, M. Z., Chiani, M., & Winters, J. H. (2003). Bit error outage for diversity reception in shadowing environment. IEEE Communication Letters, 7(1), 15–17.

    Article  Google Scholar 

  14. Vielmon, A., Li, Y., & Barry, J. R. (2004). Performance of Alamouti transmit diversity over time-varying Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 3(5), 1369–1373.

    Article  Google Scholar 

  15. Gore, D., & Paulraj, A. (2002). MIMO antennas subset selection with space–time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.

    Article  Google Scholar 

  16. Zeng, X., & Ghrayeb, A. (2004). Performance bounds for space–time block codes with receive antenna selection. IEEE Transactions on Information Theory, 50(9), 2130–2137.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 74–80.

    Article  MATH  Google Scholar 

  18. Zeng, X., & Ghrayeb, A. (2004). Antenna selection for space–time block codes over correlated Rayleigh fading channels. IEEE Canadian Journal of Electrical and Computer Engineering, 29(4), 219–226.

    Article  Google Scholar 

  19. Wing, H. W., & Larsson, E. G. (2003). Orthogonal space–time block coding with antenna selection and power allocation. IET Electronics Letters, 39(4), 379–381.

    Article  Google Scholar 

  20. Chen, Z., Yuan, J., Vucetic, B., & Zhou, Z. (2003). Performance of Alamouti scheme with transmit antenna selection. IET Electronics Letters, 39(23), 1666–1668.

    Article  Google Scholar 

  21. Love, D. (2005). On the probability of error of antenna-subset selection with space–time block codes. IEEE Transactions on Communications, 53(11), 1799–1803.

    Article  Google Scholar 

  22. Chen, C., Sezgin, A., Cioffi, J., & Paulraj, A. (2008). Antenna selection in space–time block coded systems: Performance analysis and low-complexity algorithm. IEEE Transactions on Signal Processing, 56(7), 3303–3314.

    Article  MathSciNet  Google Scholar 

  23. Zhang, W., & Tellambura, C. (2010). Performance analysis of joint transmit and receive antenna selection with orthogonal space–time coding. IEEE Transactions on Vehicular Technology, 59(5), 2631–2635.

    Article  Google Scholar 

  24. Gucluoglu, T., & Duman, T. M. (2007). Performance analysis of transmit and receive antenna selection with space–time coding. In IEEE International Conference on Communications, ICC’07, pp. 5305–5310.

  25. Wei, Z., Tellambura, C., & Xinwei, D. (2007). Space–time coded systems with joint transmit and receive antenna selection. In IEEE Global Telecommunications Conference, GLOBECOM ‘07, pp. 3519–3523.

  26. Gucluoglu, T., & Duman, T. M. (2008). Performance analysis of transmit and receive antenna selection over flat fading channels. IEEE Transactions on Wireless Communications, 7(8), 3056–3065.

    Article  Google Scholar 

  27. Torabi, M. (2008). Antenna selection for MIMO-OFDM systems. Signal Processing, 88(10), 2431–2441.

    Article  MATH  Google Scholar 

  28. Torabi, M., & Conan, J. (2015). Performance analysis of orthogonal space–time block coding with antenna selection. IET Communications, 9(10), 1298–1305.

    Article  Google Scholar 

  29. Yacoub, M. D. (2007). The κ-μ distribution and the η-μ distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  30. Badarneh, O. S., & Mesleh, R. (2016). Cooperative dual-hop wireless communication systems with beamforming over fading channels. IEEE Transactions on Vehicular Technology, 65(1), 37–46.

    Article  Google Scholar 

  31. Peña-Martín, J. P., Romero-Jerez, J. M., & Tellez-Labao, C. (2015). Performance of selection combining diversity in ημ fading channels with integer values of μ. IEEE Transactions on Vehicular Technology, 64(2), 834–839.

    Article  Google Scholar 

  32. Mesleh, R., Badarneh, O. S., Younis, A., & Haas, H. (2015). Performance analysis of spatial modulation and space-shift keying with imperfect channel estimation over generalized fading channels. IEEE Transactions on Vehicular Technology, 64(1), 88–96.

    Article  Google Scholar 

  33. Krithiga, S., Bhaskar, V., & Malarvizhi, S. (2016). Average channel capacity and bit error rate using threshold conditions for MIMO-OSTBC systems over η–µ fading channels. Wireless Personal Communications 1–19. doi:10.1007/s11277-016-3659-0.

  34. Yang, J., Chen, L., Lei, X., Peppas, K. P., & Duong, T. Q. (2016). Dual-hop cognitive amplify-and-forward relaying networks over ημ fading channels. IEEE Transactions on Vehicular Technology, 65(8), 6290–6300.

    Article  Google Scholar 

  35. Maruthu, S., Kamasani, C., & Palanivel, M. (2015). Performance analysis of multiple relay cooperative communication over generalized κμ and ημ fading channels. AEU-International Journal of Electronics and Communications, 69(9), 1220–1225.

    Article  Google Scholar 

  36. Kumar, P., & Dhaka, K. (2016). Performance analysis of a decode-and-forward relay system in κμ and ημ Fading channels. IEEE Transactions on Vehicular Technology, 65(4), 2768–2775.

    Article  Google Scholar 

  37. Torabi, M., Aissa, S., & Soleymani, M. (2007). On the BER performance of space-frequency block coded OFDM systems in fading MIMO channels. IEEE Transactions on Wireless Communications, 6(4), 1366–1373.

    Article  Google Scholar 

  38. Proakis, J. G. (2001). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  39. Ermolova, N. Y. (2008). Moment generating functions of the generalized ημ and κμ distributions and their applications to performance evaluations of communication systems. IEEE Communications Letters, 12(7), 502–504.

    Article  MathSciNet  Google Scholar 

  40. Simon, M. K., & Alouini, M. S. (2005). Digital communications over fading channels: A unified approach to performance analysis (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  41. Gentle, J. E. (2005). Random number generation and Monte Carlo methods (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  42. Cogliatti, R., De Souza, R., & Yacoub, M. (2012). Practical, highly efficient algorithm for generating κμ and ημ variates and a near-100 efficient algorithm for generating αμ variates. IEEE Communication Letters, 16(11), 1768–1771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Surendar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendar, M., Muthuchidambaranathan, P. Average BER Performance of Orthogonal Space–Time Block Coding System with Antenna Selection Over Generalized ημ Fading Channel. Wireless Pers Commun 96, 1407–1418 (2017). https://doi.org/10.1007/s11277-017-4246-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4246-8

Keywords

Navigation