Skip to main content

Advertisement

Log in

In-Network Data Processing Based on Compressed Sensing in WSN: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy conservation in resource constrained wireless sensor networks (WSNs) is an important concern. Techniques such as, energy conserving MAC protocols have been proved to be efficient to minimize the energy consumption in such networks. However, techniques based on in-network data compression have dominated recent research works for reducing the network traffic thereby improving the network lifetime. A large number of compression techniques have been proposed in recent years with diverse applications in WSNs. This work presents a comprehensive analysis of various existing in-network data processing techniques based on compressed sensing in WSNs. The essential features, requirements and characteristics of compression algorithms in WSNs, are discussed in detail with a classification of existing algorithms into different categories. A set of parameters are identified for a comparative evaluation of these algorithms to determine the efficacy of such in-network data processing techniques in an environment such as a WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.

    Article  Google Scholar 

  2. Boubiche, D. E., Boubiche, S., & Bilami, A. (2015). A cross-layer watermarking-based mechanism for data aggregation integrity in heterogeneous WSNs. Communications Letters, IEEE, 19(5), 823–826.

    Article  Google Scholar 

  3. Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. Parallel and Distributed Systems, IEEE Transactions on, 25(3), 806–815.

    Article  Google Scholar 

  4. Li, S., Da Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. Industrial Informatics, IEEE Transactions on, 9(4), 2177–2186.

    Article  Google Scholar 

  5. Singh, S., Chand, S., & Kumar, B. (2016). Energy efficient clustering protocol using fuzzy logic for heterogeneous WSNs. Wireless Personal Communications, 86(2), 451–475.

    Article  Google Scholar 

  6. Han, G., Huihui, X., Jiang, J., Shu, L., Hara, T., & Nishio, S. (2013). Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing, 13(14), 1324–1336.

    Article  Google Scholar 

  7. Sinha, A., & Lobiyal, D. K. (2013). A multi-level strategy for energy efficient data aggregation in wireless sensor networks. Wireless Personal Communications, 72(2), 1513–1531.

    Article  Google Scholar 

  8. Candes, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  9. Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.

    Article  Google Scholar 

  10. Salomon, D. (2004). Data compression: the complete reference. Berlin: Springer.

    MATH  Google Scholar 

  11. Sayood, K. (2000). Introduction to data compression. Los Altos: Morgan Kaufmann.

    MATH  Google Scholar 

  12. Shi, H., Venkatesha Prasad, R., Onur, E., & IgnasNiemegeers, G. M. M. (2014). Fairness in wireless networks: Issues, measures and challenges. Communications Surveys & Tutorials, IEEE, 16(1), 5–24.

    Article  Google Scholar 

  13. Othman, S. B., Bahattab, A. A., Trad, A., & Youssef, H. (2015). Confidentiality and integrity for data aggregation in wsn using homomorphic encryption. Wireless Personal Communications, 80(2), 867–889.

    Article  Google Scholar 

  14. Sutagundar, A. V., & Manvi, S. S. (2013). Wheel based event triggered data aggregation and routing in wireless sensor networks: Agent based approach. Wireless Personal Communications, 71(1), 491–517.

    Article  Google Scholar 

  15. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. New York: Wiley.

    Google Scholar 

  16. Guo, W., Xiong, N., Vasilakos, A. V., Chen, G., & Cheng, H. (2011). Multi-source temporal data aggregation in wireless sensor networks. Wireless Personal Communications, 56(3), 359–370.

    Article  Google Scholar 

  17. Chand, S., Singh, S., & Kumar, B. (2014). Heterogeneous HEED protocol for wireless sensor networks. Wireless Personal Communications, 77(3), 2117–2139.

    Article  Google Scholar 

  18. Li, X., Wen, Q., & Li, W. (2016). A three-factor based remote user authentication scheme: Strengthening systematic security and personal privacy for wireless communications. Wireless Personal Communications, 86(3), 1593–1610.

    Article  MathSciNet  Google Scholar 

  19. Gao, T., Song, J.-Y., Zou, J.-Y., Ding, J.-H., Wang, D.-Q., & Jin, R.-C. (2016). An overview of performance trade-off mechanisms in routing protocol for green wireless sensor networks. Wireless Networks, 22(1), 135–157.

    Article  Google Scholar 

  20. Lee, J. H. & Jung, I. B. (2010). Adaptive-compression based congestion control technique for wireless sensor networks. Sensors, 10(4), 2919–2945.

  21. Slepian, D. & Wolf, J. (1973). Noiseless coding of correlated information sources. IEEE Transactions on information Theory, 19(4), 471–480.

  22. Welch, T. A. (1984). A technique for high-performance data compression. Computer (Long. Beach. Calif), 17(6), 8–19.

    Google Scholar 

  23. Prabu, S., Maheswari, R. (2014) Improving wireless sensor network lifespan by efficient routing algorithm and LZW compression. in International Conference on Information Communication and Embedded Systems (ICICES2014). (pp. 1–5).

  24. Asgarizadeh, H., Abouei, J. (2013) An energy-efficient SD-based LZW algorithm in dynamic wireless sensor networks. in 2013 21st Iranian Conference on Electrical Engineering (ICEE). (pp. 1–6).

  25. Zhang, H., Fan, X., Liu, S., Zhong, Z. (2011) Design and realization of improved LZW algorithm for wireless sensor networks. in International Conference on Information Science and Technology, (pp. 671–675).

  26. Rajagopalan, R. & Varshney, P. K. (2006) Data aggregation techniques in sensor networks: A survey.

  27. Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022–2037.

    Article  MATH  Google Scholar 

  28. Heinzelman, W. R., Chandrakasan, A., Balakrishnan, H. (2010). Energy-efficient communication protocol for wireless microsensor networks, in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 1, p. 10.

  29. Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  30. Lindsey, S., Raghavendra, C., & Sivalingam, K. M. (2002). Data gathering algorithms in sensor networks using energy metrics. IEEE Transactions on Parallel and Distributed Systems, 13(9), 924–935.

    Article  Google Scholar 

  31. Madden, S., Michael, J. F., Hellerstein, J. M., & Hong, W. (2002). TAG: A tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review, 36(SI), 131–146.

    Article  Google Scholar 

  32. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: a survey. Wireless Communications, IEEE, 14(2), 70–87.

    Article  Google Scholar 

  33. Enachescu, Mihaela, Ashish Goel, Ramesh Govindan, and Rajeev Motwani. “Scale free aggregation in sensor networks.” In Algorithmic Aspects of Wireless Sensor Networks, (pp. 71–84). Springer Berlin Heidelberg, 2004.

  34. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J. (2002) Impact of network density on data aggregation in wireless sensor networks, in Proceedings 22nd International Conference on Distributed Computing Systems, (pp. 457–458).

  35. Zhong, L. C, Rahul S., Chunlong G., Rabaey, J. (2001) An ultra-low power and distributed access protocol for broadband wireless sensor networks. IEEE Broadband Wireless Summit, 3.

  36. Kulik, J., Heinzelman, W., & Balakrishnan, H. (2002). Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless networks, 8(2/3), 169–185.

    Article  MATH  Google Scholar 

  37. Krishnamachari, B., & Heidemann, J. (2004). Application-specific modelling of information routing in wireless sensor networks. IEEE International Conference on Performance, Computing, and Communications, 2004, 717–722.

    Google Scholar 

  38. Xiao, J.-J., Ribeiro, A., Luo, Z.-Q., & Giannakis, G. B. (2006). Distributed compression-estimation using wireless sensor networks. Signal Processing Magazine, IEEE, 23(4), 27–41.

    Article  Google Scholar 

  39. Intanagonwiwat, C., Govindan, R., Estrin, D.(2000) Directed diffusion: a scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on Mobile computing and networking, (pp. 56–67). ACM.

  40. Stann, F., & Heidemann, J. (2003). RMST: reliable data transport in sensor networks. Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003, 102–112.

    Article  Google Scholar 

  41. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transaction on Wireless Communication, 1(4), 660–670.

    Article  Google Scholar 

  42. Heinzelman, W. R., Chandrakasan, A., Balakrishnan, H.(2000) Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on, pp. 10. IEEE.

  43. Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.

    Article  Google Scholar 

  44. Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2006). Randomized gossip algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI), 2508–2530.

    MathSciNet  MATH  Google Scholar 

  45. Dimakis, A. G., Sarwate, A. D., Wainwright, M. J. (2006). Geographic gossip, in Proceedings of the fifth international conference on Information processing in sensor networks—IPSN’06, p. 69.

  46. Manjhi,A., Nath, S., Gibbons, P. B. (2005) Tributaries and deltas, in Proceedings of the 2005 ACM SIGMOD international conference on Management of data—SIGMOD’05, p. 287.

  47. Zhu, Y., Vedantham, R., Park, S.-J., & Sivakumar, R. (2008). A scalable correlation aware aggregation strategy for wireless sensor networks. Information Fusion, 9(3), 354–369.

    Article  Google Scholar 

  48. Cappiello, C., Schreiber, F. A. (2009) Quality-and energy-aware data compression by aggregation in wsn data streams. In Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, (pp. 1–6). IEEE.

  49. Kim, H. J., Choi, S. G. (2010). A study on a QoS/QoE correlation model for QoE evaluation on IPTV service. In Advanced Communication Technology (ICACT), 2010 The 12th International Conference on, vol. 2, (pp. 1377–1382). IEEE.

  50. Deshpande, A., Carlos, G., Madden, S. R., Hellerstein, J. M., Hong, W. (2004) Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, (pp. 588–599). VLDB Endowment.

  51. Chu, D., Deshpande, A., Hellerstein, J. M., Hong, W. (2006) Approximate data collection in sensor networks using probabilistic models. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference on, (pp. 48–48). IEEE.

  52. Lu, J., Valois, F., Dohler, M., Wu, M.-Y. (2010). Optimized data aggregation in wsns using adaptive arma. In 2010 Fourth International Conference on Sensor Technologies and Applications, (pp. 115–120). IEEE, 2010.

  53. Tulone, D., Madden, S. (2006) PAQ: Time series forecasting for approximate query answering in sensor networks. In Wireless Sensor Networks, (pp. 21–37). Springer Berlin Heidelberg, 2006.

  54. Xiao, D., Wei, M., Zhou, Y. (2006) Secure-spin: Secure sensor protocol for information via negotiation for wireless sensor networks. In Industrial Electronics and Applications, 2006 1ST IEEE Conference on, (pp. 1–4). IEEE.

  55. Liu, C, Wu, K., Tsao, M. (2005) Energy efficient information collection with the ARIMA model in wireless sensor networks. In Global Telecommunications Conference, 2005. GLOBECOM’05. IEEE, vol. 5, pp. 5 IEEE.

  56. Le Borgne, Y.-A., Santini, S., & Bontempi, G. (2007). Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing, 87(12), 3010–3020.

    Article  MATH  Google Scholar 

  57. Matos, T. B., Brayner, A., Maia, J. E. B. (2010) Towards in-network data prediction in wireless sensor networks. In Proceedings of the 2010 ACM Symposium on Applied Computing, (pp. 592–596). ACM.

  58. Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., & Menezes, R. (2008). An adaptive in-network aggregation operator for query processing in wireless sensor networks. Journal of Systems and Software, 81(3), 328–342.

    Article  MATH  Google Scholar 

  59. Pradhan, S. S., Kusuma, J., & Ramchandran, K. (2002). Distributed compression in a dense microsensor network. Signal Processing Magazine, IEEE, 19(2), 51–60.

    Article  Google Scholar 

  60. Xiong, Z., Liveris, A. D., & Cheng, S. (2004). Distributed source coding for sensor networks. Signal Processing Magazine, IEEE, 21(5), 80–94.

    Article  Google Scholar 

  61. Kaspi, A. H., & Berger, T. (1982). Rate-distortion for correlated sources with partially separated encoders. Information Theory, IEEE Transactions on, 28(6), 828–840.

    Article  MathSciNet  MATH  Google Scholar 

  62. Chou, J., Petrovic, D., & Ramchandran, K. (2004). A distributed and adaptive signal processing approach to exploiting correlation in sensor networks. Ad Hoc Networks, 2(4), 387–403.

    Article  Google Scholar 

  63. Yuen, K., Liang, B., & Li, B. (2008). A distributed framework for correlated data gathering in sensor networks. Vehicular Technology, IEEE Transactions on, 57(1), 578–593.

    Article  Google Scholar 

  64. Garcia-Frias, J. (2001). Compression of correlated binary sources using turbo codes. Communications Letters, IEEE, 5(10), 417–419.

    Article  Google Scholar 

  65. Liveris, A. D., Xiong, Z., & Georghiades, C. N. (2002). Compression of binary sources with side information at the decoder using LDPC codes. Communications Letters, IEEE, 6(10), 440–442.

    Article  Google Scholar 

  66. Pradhan, S. S., Ramchandran, K. (2000) Distributed source coding: Symmetric rates and applications to sensor networks. In Data Compression Conference. Proceedings. DCC 2000, (pp. 363–372). IEEE.

  67. Di Paolo, L., Fischione, C., Graziosi, F., Santucci, F., & Tennina, S. (2006). WSN01-2: Performance analysis of distributed source coding and packet aggregation in wireless sensor networks. IEEE Globecom, 2006, 1–6.

    Google Scholar 

  68. Marco, D., Neuhoff, D. L.(2004) Reliability vs. efficiency in distributed source coding for field-gathering sensor networks.” In Proceedings of the 3rd international symposium on Information processing in sensor networks, (pp. 161–168). ACM.

  69. Hong, Y. W. P., Tsai, Y.-R., Liao, Y.-Y., Lin, C.-H., & Yang, K.-J. (2010). On the throughput, delay, and energy efficiency of distributed source coding in random access sensor networks. Wireless Communications IEEE Transactions on, 9(6), 1965–1975.

    Article  Google Scholar 

  70. Dang, T., Bulusu, N., Feng, W-c. (2007) Rida: A robust information-driven data compression architecture for irregular wireless sensor networks. In Wireless Sensor Networks, (pp. 133–149). Springer Berlin Heidelberg.

  71. Wagner, R., Choi, H., Baraniuk, R., Delouille, V. (2005). Distributed wavelet transform for irregular sensor network grids. In Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on, (pp. 1196–1201). IEEE.

  72. Ciancio, A., Ortega, A. (2006). A dynamic programming approach to distortion-energy optimization for distributed wavelet compression with applications to data gathering inwireless sensor networks. In 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings (vol. 4, pp. IV–949–IV–952).

  73. Gastpar, M., Dragotti, P. L., & Vetterli, M. (2006). The distributed karhunen–loeve transform. Information Theory, IEEE Transactions on, 52(12), 5177–5196.

    Article  MathSciNet  MATH  Google Scholar 

  74. Pattem, S., Shen, G., Chen, Y., Krishnamachari, B., Ortega, A. (2009) Senzip: An architecture for distributed en-route compression in wireless sensor networks. In Workshop on Sensor Networks for Earth and Space Science Applications (ESSA), San Francisco, CA, 13–16 April 2009.

  75. Shen, G., Narang, S. K., Ortega, A.(2009) Adaptive distributed transforms for irregularly sampled wireless sensor networks. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, (pp. 2225–2228). IEEE.

  76. Lee, D-U., Kim, H., Tu, S., Rahimi, M., Estrin, D., Villasenor, J. D. (2007) Energy-optimized image communication on resource-constrained sensor platforms. In Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International Symposium on, (pp. 216–225). IEEE.

  77. Wang, W., Peng, D., Wang, H., Sharif, H., & Chen, H.-H. (2009). Cross-layer multirate interaction with distributed source coding in wireless sensor networks. Wireless Communications IEEE Transactions on, 8(2), 787–795.

    Article  Google Scholar 

  78. Servetto, S. D. (2003). Distributed signal processing algorithms for the sensor broadcast problem. In Conference on Information Sciences and Systems, The Johns Hopkins University.

  79. Ciancio, A., Ortega, A. (2005) A distributed wavelet compression algorithm for wireless multihop sensor networks using lifting. In Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on, vol. 4, (pp. iv–825). IEEE.

  80. Acimovic, J., Beferull-Lozano, B., Cristescu, R. (2005) Adaptive distributed algorithms for power-efficient data gathering in sensor networks. In Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, vol. 2, (pp. 946–951). IEEE.

  81. Xiang, L, Luo, J., Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on, (pp. 46–54). IEEE.

  82. Davenport, M. A., Duarte, M. F., Eldar, Y. C., & Kutyniok, G. (2011). Introduction to compressed sensing., 93(1), 2. (Preprint).

    Google Scholar 

  83. Han, Z., Li, H., & Yin, W. (2013). Compressive sensing for wireless networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  84. Razzaque, M. A., Bleakley, C., & Dobson, S. (2013). Compression in wireless sensor networks: A survey and comparative evaluation. ACM Transactions on Sensor Networks (TOSN), 10(1), 5.

    Article  Google Scholar 

  85. Donoho, D. L. (2006). Compressed sensing. Information Theory, IEEE Transactions on, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  86. Luo, J., Xiang, L., Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In Communications (ICC), 2010 IEEE International Conference on, (pp. 1–6). IEEE.

  87. Xiang, L., Luo, J., Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on, (pp. 46–54). IEEE.

  88. Singh, V. K., Sharma, G., & Kumar, M. (2016). Compressed sensing based acoustic event detection in protected area networks with wireless multimedia sensors. Multimedia Tools and Applications, 1–25. doi:10.1007/s11042-016-4241-1.

  89. Caione, C., Brunelli, D., Benini, L. (2010). Compressive sensing optimization over ZigBee networks. In SIES, (pp. 36–44).

  90. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  91. Eschenauer, L., Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM conference on Computer and communications security, (pp. 41–47). ACM.

  92. Hoang, D. B., Kamyabpour, N. (2012) An energy driven architecture for wireless sensor networks. In Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2012 13th International Conference on, (pp. 10–15). IEEE.

  93. Jurdak, R., Ruzzelli, A. G., & O’Hare, G. M. P. (2010). Radio sleep mode optimization in wireless sensor networks. Mobile Computing, IEEE Transactions on, 9(7), 955–968.

    Article  Google Scholar 

  94. Huang, S. C. H., Wan, P.-J., Vu, C. T., Li, Y., Yao, F.(2007) Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, (pp. 366–372). IEEE.

  95. Xu, X., Wang, S., Mao, X., Tang, S., Li, X. Y. (2009) An improved approximation algorithm for data aggregation in multi-hop wireless sensor networks. In Proceedings of the 2nd ACM international workshop on Foundations of wireless ad hoc and sensor networking and computing, (pp. 47–56). ACM.

  96. Huang, F., Liang, Y. (2007) Towards energy optimization in environmental wireless sensor networks for lossless and reliable data gathering. In Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE International Conference on, (pp. 1–6). IEEE.

  97. Deng, K., Moore, A. W., Nechyba, M. C. Learning to recognize time series: Combining arma models with memory-based learning. In Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE International Symposium on, (pp. 246–251). IEEE.

  98. Gehrig, N., & Dragotti, P. L. (2005). Symmetric and asymmetric Slepian–Wolf codes with systematic and nonsystematic linear codes. IEEE Communications Letters, 9(1), 61–63.

    Article  Google Scholar 

  99. Scaglione, A., & Servetto, S. (2005). On the interdependence of routing and data compression in multi-hop sensor networks. Wireless Networks, 11(1–2), 149–160.

    Article  Google Scholar 

  100. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier analysis and applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  101. Liu, S., Cheng, L. (2006) Efficient data compression in wireless sensor networks for civil infrastructure health monitoring. In Sensor and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society on, vol. 3, (pp. 823–829). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Krishna Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Singh, V.K. & Kumar, M. In-Network Data Processing Based on Compressed Sensing in WSN: A Survey. Wireless Pers Commun 96, 2087–2124 (2017). https://doi.org/10.1007/s11277-017-4288-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4288-y

Keywords

Navigation