Skip to main content
Log in

A Robust Power Allocation Scheme for Relay Communication Networks Based on Seller–Buyer Game

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A robust power allocation algorithm is proposed in this paper based on robust game theory. Considering that the channel gains are usually changing with the dynamic environment in practice, the uncertainty will cause the estimation errors of channel gains and deteriorate the quality of services of users. A probability threshold method is used to deal with the uncertainty of the channel gains. To jointly consider the maximum utilities of source node and relay node, a seller–buyer game is introduced and it is proved that the game converges to the unique equilibrium point. Besides, a distributed iteration algorithm is proposed to reduce the information overhead. Numerical results show the effectiveness and robustness of the proposed power algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ju, M., Kim, I., & Kim, D. I. (2012). Joint relay selection and relay ordering for DF-based cooperative relay networks. IEEE Transactions on Communications, 60(4), 908–915.

    Article  Google Scholar 

  2. Liu, Q., Zhang, W., Ma, X., & Zhou, G. T. (2012). Designing peak power constrained amplify-and-forward relay networks with cooperative diversity. IEEE Transactions on Communications, 11(5), 1733–1743.

    Google Scholar 

  3. Zhao, G., Yang, C., Li, G. Y., Li, D., & Soong, A. C. K. (2011). Power and channel allocation for cooperative relay in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 151–159.

    Article  Google Scholar 

  4. Kadloor, S., & Adve, R. (2010). Relay selection and power allocation in cooperative cellular networks. IEEE Transactions on Communications, 9(5), 1676–1685.

    Google Scholar 

  5. Salem, M., Adinoyi, A., Rahman, M., Yanikomeroglu, H., Falconer, D., & Kim, Y. (2010). Fairness-aware radio resource management in downlink OFDMA cellular relay networks. IEEE Transactions on Communications, 9(5), 1628–1639.

    Google Scholar 

  6. Wang, B., Han, Z., & Liu, K. J. R. (2009). Distributed relay selection and power control for multiuser cooperative communication networks using stackelberg game. IEEE Transactions on Mobile Computing, 8(7), 975–990.

    Article  Google Scholar 

  7. Pan, Y., Nix, A., & Beach, M. (2008). A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks. In IEEE Transactions on Mobile Computing, Cannes, France (pp. 1–5).

  8. Liu, D., Chen, Y., Zhang, T., Chai, K., Loo, J., & Vinel, A. (2013). Stackelberg game based cooperative user relay assisted load balancing in cellular networks. IEEE Communications Letters, 17(2), 424–427.

    Article  Google Scholar 

  9. Han, Z., Ji, Z., & Liu, K. J. R. (2005). Fair multiuser channel allocation for OFDMA networks using nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.

    Article  Google Scholar 

  10. Liu, Z., Hao, L., Xia, Y., & Guan, X. (2015). Price bargaining based on the Stackelberg game in two-tier orthogonal frequency division multiple access femtocell networks. IET on Communications, 9(1), 133–145.

    Article  Google Scholar 

  11. Jing, Y. D., & J, H. (2009). Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory, 55(6), 2499–2517.

    Article  MathSciNet  MATH  Google Scholar 

  12. Souryal, M. R., & Vojcic, B. R. (2006) . Performance of amplify-and-forward and decode-and-forward relaying in rayleigh fading with turbo codes. In IEEE International Conference on Speech and Signal Processing, Toulouse.

  13. Madsen, A. H., & Zhang, J. S. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zheng, G., Wong, K., & Ottersten, B. (2009). Robust cognitive beamforming with bounded channel uncertainties. IEEE Transactions on Signal Processing, 57(12), 4871–4881.

    Article  MathSciNet  Google Scholar 

  15. Chen, G., Alnatouh, O., & Chambers, J. (2013). Outage probability analysis for a cognitive amplify-and-forward relay network with single and multi-relay selection. IET on Communications, 7(17), 1974–1981.

    Article  Google Scholar 

  16. Quek, T. Q. S., Win, M. Z., & Chiani, M. (2010). Robust power allocation algorithms for wireless relay networks. IEEE Transactions on Wireless Communications, 58(7), 1931–1938.

    Article  Google Scholar 

  17. Liu, Z., Yuan, H., Hao, L., Guan, X., & Yang, H. (2015). Robust power control for amplify-and-forward relaying scheme. IEEE Communications Letters, 19(2), 263–266.

    Article  Google Scholar 

  18. Wang, K., Jacklin, N., Ding, Z., & Chi, C. (2013). Robust MISO transmit optimization under outage-based QoS constraints in two-tier heterogeneous networks. IEEE Transactions on Wireless Communications, 12(4), 1883–1897.

    Article  Google Scholar 

  19. Liu, Y., & Chen, W. (2012). Limited-feedback-based adaptive power allocation and subcarrier pairing for OFDM DF relay networks with diversity. IEEE Transactions on Vehicular Technology, 61(6), 2559–2571.

    Article  Google Scholar 

  20. Trdlicka, J., & Hanzalek, Z. (2012). In-network distributed algorithm for energy optimal routing based on dual decomposition of linear programming. IEEE Transactions on Communications, 60(6), 1634–1645.

    Article  Google Scholar 

  21. Gong, S., Wang, P., Liu, Y. K., & Zhuang, W. H. (2013). Robust power control with distribution uncertainty in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2397–2408.

    Article  Google Scholar 

  22. Han, Q. N., Ma, K., Wang, X. C., Guan, X. P., & Ma, J. H. (2013). Stackelberg game based interference management for two-tier femtocell networks. Wireless Networks, 19(7), 1665–1677.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (61473247), the Natural Science Foundation of Hebei Province (F2017203140, F2017203084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Appendices

Appendix 1

The detail proof of (6) in Sect. 3 is given as follows

Assuming that the channel gain \(G={\overline{G}}+\Delta G\), the parameter \({\Delta {G}}\) is subject to standard normal distribution. In this, we define \(X={\Delta {G}}\), that is

$$\begin{aligned} X\sim N(0,1) \end{aligned}$$

The density function of X is denoted as

$$\begin{aligned} \Psi (x)=\frac{1}{\sqrt{2\pi }}e^{-\frac{x^{2}}{2}} \end{aligned}$$

There is another random variable Y, it is described as

$$\begin{aligned} Y=uX \end{aligned}$$

where the parameter u is constant.

Then the distribution function is denoted as follows

$$\begin{aligned} F(Y\le y)=F(uX\le y)=F\left( X\le \frac{y}{u}\right) =\int _{-\infty }^{\frac{y}{u}}{\frac{1}{\sqrt{2\pi }} e^{-\frac{x^{2}}{2}}dx} \end{aligned}$$

There the density function of Y is formulated as

$$\begin{aligned} f(y)=[F(Y\le y)]^{\prime }=\frac{1}{u\sqrt{2\pi }}e^{\frac{y^{2}}{2u^{2}}} \end{aligned}$$

So the parameter Y is subject to the following relation.

$$\begin{aligned} Y\sim N(0,u^{2}) \end{aligned}$$

Appendix 2

The detailed proof process of (16) is given as follows

$$\begin{aligned} Pr[N\le L]= & {} \int _{-\infty }^{L}{\frac{1}{\sqrt{2\pi }\sqrt{a^{2}+b_i^{2}}}e^{-\frac{x^{2}}{2\left( a^{2}+b_i^{2}\right) }}dx}\\&=0.5+\int _{0}^{L}{\frac{1}{\sqrt{2\pi }\sqrt{a^{2}+b_i^{2}}}e^{-\frac{x^{2}}{2\left( a^{2}+b_i^{2}\right) }}dx} \end{aligned}$$

where define \(A=\sqrt{a^{2}+b_i^{2}}\), then the expression is rewritten as follows

$$\begin{aligned} Pr[N\le L]= & {} 0.5+\int _{0}^{L}{\frac{1}{\sqrt{2\pi }A}e^{-\frac{x^{2}}{2A^{2}}}dx}\\ \end{aligned}$$

By Taylor series expansion, we know \(e^{-\frac{x^{2}}{2A^{2}}}\) is expanded at \(x=0\). So \(e^{-\frac{x^{2}}{2A^{2}}}|_{x=0}=1-\frac{x^{2}}{2A^{2}}+\frac{x^{4}}{8A^{4}}\) is set up. Then the expression is formulated as

$$\begin{aligned} Pr[N\le L]= & {} 0.5+\frac{1}{\sqrt{2\pi }A}\int _{0}^{L}{\left( 1-\frac{x^{2}}{2A^{2}}+\frac{x^{4}}{8A^{4}}\right) dx}\\ \end{aligned}$$

By comparing the magnitude of the parameters, we know the other term excepting the first term is so small that can be ignored. So the expression is rewritten as follows

$$\begin{aligned} Pr[N\le L]= & {} {\frac{L}{\sqrt{2\pi }A}}\le \varepsilon ^{\prime } \end{aligned}$$

According to the mathematical relationship \(\sqrt{X+Y}\le \sqrt{X}+\sqrt{Y}\), we get the following expression \(A=\sqrt{a^{2}+b_i^{2}}\le \sqrt{a^{2}}+\sqrt{b_i^{2}}=a+b_i\). Because L is negative, the following expression is set up.

$$\begin{aligned} Pr[N\le L]= & {} {\frac{L}{\sqrt{2\pi }(a+b_i)}}\le \varepsilon ^{\prime }\\&\Rightarrow L-\varepsilon ^{\prime }\sqrt{2\pi }(a+b_i)\le 0 \end{aligned}$$

Appendix 3

The detailed proof process is given as follows

$$\begin{aligned} U_s(P_{r_i})= & {} g\ln \left( 1+\frac{P_sG_{s,d}+P_{r_i}G_{r_i,d}}{\sigma ^{2}}\right) -d_iP_{r_i}\\ \frac{\partial {U_s}}{\partial {P_{r_i}}}= & {} \frac{gG_{r_i,d}}{\sigma ^{2}+P_sG_{s,d}+P_{r_i}G_{r_i,d}}-d_i\\ \frac{\partial ^{2}U_s}{\partial ^{2}P_{r_i}}= & {} -\frac{gG_{r_i,d}^{2}}{\left( \sigma ^{2}+P_sG_{s,d}+P_{r_i}G_{r_i,d}\right) ^{2}}<0 \end{aligned}$$

So the function \(U_{s}(P_{r_i})\) is concave, \(U_{s}(P_{r_i})\) exists optimal solution.

Appendix 4

The detailed proof process is given as follows

$$\begin{aligned} \frac{\partial {U_{r_i}}}{\partial {d_i}}= & {} P_{r_i}+\frac{\partial {P_{r_i}}}{\partial {d_i}}\left( d_i-c_i\right) \\ \frac{\partial ^{2}U_{r_i}}{\partial {d_i^{2}}}= & {} 2\frac{\partial {P_{r_i}}}{\partial {d_i}}+\frac{\partial ^{2}P_{r_i}}{\partial {d_i^{2}}}(d_i-c_i)\\ \frac{\partial ^{2}P_{r_i}}{\partial {d_i^{2}}}= & {} \frac{2g\sigma ^{6}\left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] }{\left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] ^{4}} \end{aligned}$$

After list systematically, we regulate the following expression

$$\begin{aligned} \frac{\partial ^{2}{U_{r_i}}}{\partial {d_i^{2}}}= & {} \frac{2g\sigma ^{4}}{\left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] ^{2}}\\&\times \left[ \frac{-c_i\sigma ^{2}-u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) }{\left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] }\right] <0 \end{aligned}$$

So the function \(U_{r_i}(P_{r_i})\) is concave, \(U_{r_i}(P_{r_i})\) exists optimal solution.

Appendix 5

  1. (1)

    Positivity According to \(\frac{\partial P_{r_i}^{*}}{\partial d_i}=-\frac{g\sigma ^{4}}{[d_i\sigma ^{2}+u_i({\overline{G}}_{r_i,d} +\varepsilon ^{\prime }\sqrt{2\pi })]^{2}}<0\). Moreover, if \(c_i>0\) and \(P_{r_i}\ge 0\), then by the following relation

    $$\begin{aligned} d_i=I(d_i)\triangleq c_i-\frac{P_{r_i}^{*}}{\partial P_{r_i}^{*}/\partial d_i} \end{aligned}$$

    So \(I(d_i)>0\), each relay node starts improving its price from \(c_i\).

  2. (2)

    Scalability Comparing \(\alpha I(d_i)\) and \(I(\alpha d_i)\) in an element-wise manner.

    $$\begin{aligned} \alpha I(d_i)-I(\alpha d_i)= & {} (\alpha -1)c_i+\alpha \left[ \frac{P_{r_i}(\alpha d_i)}{\partial P_{r_i}(\alpha d_i)/\partial d_i}-\frac{P_{r_i}(d_i)}{\partial P_{r_i}(d_i)/\partial d_i}\right] \end{aligned}$$

    where \(\alpha >1\), \((\alpha -1)c_i>0\), so the problem reduces to proving that the second term is positive. Then, we get the following relationship.

    $$\begin{aligned} \frac{P_{r_i}(d_i)}{\partial P_{r_i}(d_i)/\partial d_i}= & {} -\frac{\left[ g\sigma ^{2}\left( {\overline{G}}_{r_i,d}+\Delta G_{r_i,d}\right) \right] \left[ d_i\sigma ^{2}+u_i({\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi })\right] }{g\sigma ^{4}\left( {\overline{G}}_{r_i,d}+\Delta G_{r_i,d}\right) }\\&\quad +\,\frac{\left[ \left( \sigma ^{2}+P_s{\overline{G}}_{s,d}+P_s\Delta G_{s,d}\right) \left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] \right] }{g\sigma ^{4}({\overline{G}}_{r_i,d}+\Delta G_{r_i,d})}\\&\quad \times \,\left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] \end{aligned}$$

    Similarly

    $$\begin{aligned} \frac{P_{r_i}(\alpha d_i)}{\partial P_{r_i}(\alpha d_i)/\partial d_i}= & {} -\frac{\left[ g\sigma ^{2}\left( {\overline{G}}_{r_i,d}+\Delta G_{r_i,d}\right) \right] \left[ \alpha d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] }{\alpha g\sigma ^{4}({\overline{G}}_{r_i,d}+\Delta G_{r_i,d})}\\&\quad +\,\frac{\left[ \left( \sigma ^{2}+P_s{\overline{G}}_{s,d}+P_s\Delta G_{s,d}\right) \left[ \alpha d_i\sigma ^{2}+u_i({\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi })\right] \right] }{\alpha g\sigma ^{4}({\overline{G}}_{r_i,d}+\Delta G_{r_i,d})}\\&\quad \times \,\left[ \alpha d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] \end{aligned}$$

    Because the signal of \(\left( \frac{P_{r_i}(\alpha d_i)}{\partial P_{r_i}(\alpha d_i)/\partial d_i}-\frac{P_{r_i}(d_i)}{\partial P_{r_i}(d_i)/\partial d_i}\right)\) is difficult to determine. We define \(m(t)=\frac{P_{r,i}(d_i)}{\frac{P_{r_i}(d_i)}{\partial P_{r_i}(d_i)/\partial d_i}}\). Where m(t) is a function about \(d_i\). So the problem is transformed to judge the monotonicity of m(t).

    $$\begin{aligned} \frac{\partial m(t)}{\partial d_i}= & {} \frac{2\left( \sigma ^{2}+P_s{\overline{G}}_{s,d}+P_s\Delta G_{s,d}\right) \left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d}+\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] }{g\sigma ^{2}\left( {\overline{G}}_{r_i,d}+\Delta G_{r_i,d}\right) } -1 \end{aligned}$$

    After extensive numerical tests for a wide parameters, we observe the term \(\frac{\partial m(t)}{\partial d_{i}}\) is positive. Since m(t) is negative, then \(\left( \frac{P_{r_i}(\alpha d_{i})}{\partial P_{r_i}(\alpha d_{i})/\partial d_{i}}-\frac{P_{r_{i}}(d_{i})}{\partial P_{r_i}(d_{i})/\partial d_{i}}\right)\) is positive. Therefore, we claim that \(\alpha I(d_{i})>I(\alpha d_i)\).

  3. (3)

    Monotonicity Suppose \(d_{i}\) and \(d_{i}^{\prime }\) are different price , and \(d_{i}>d_{i}^{\prime }\).

    $$\begin{aligned} \frac{\partial I_i(d_i)}{\partial d_i}= & {} 1- \frac{2\left( \sigma ^{2}+P_s{\overline{G}}_{s,d}+P_s\Delta G_{s,d}\right) \left[ d_i\sigma ^{2}+u_i\left( {\overline{G}}_{r_i,d} +\varepsilon ^{\prime }\sqrt{2\pi }\right) \right] }{g\sigma ^{2}\left( {\overline{G}}_{r_i,d}+\Delta G_{r_i,d}\right) } \end{aligned}$$

    According to the analysis among the scalability, we know \(\frac{\partial I_i(d_i)}{\partial d_i}<0\). Therefore, \(I_{i}(d_{i})\) is monotonically decreasing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, P., Yuan, Y. et al. A Robust Power Allocation Scheme for Relay Communication Networks Based on Seller–Buyer Game. Wireless Pers Commun 96, 4675–4693 (2017). https://doi.org/10.1007/s11277-017-4410-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4410-1

Keywords

Navigation