Skip to main content
Log in

QoE-Driven Cross-Layer Downlink Scheduling for Heterogeneous Traffics Over 4G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the soaring demands for high speed data communication, as well as transmission of various types of services with different requirements over cellular networks, having a decent radio resource management is considered vital in Long Term Evolution (LTE) system. In particular, satisfying the quality of service (QoS) requirements of different applications is one of the key challenges of radio resource management that needs to be dealt by the LTE system. In this paper, we propose a cross-layer design scheme that jointly optimizes three different layers of wireless protocol stack, namely application, Medium Access Control, and physical layer. The cross-layer optimization framework provides efficient allocation of wireless resources across different types of applications (i.e., real-time and non real-time) run by different users to maximize network resource utilization and user-perceived QoS, or also known as Quality of Experience (QoE). Here, Mean Opinion Score is used as a unified QoE metric that indicates the user-perceived quality for real-time or multimedia services notably video applications. Along with multimedia services, the proposed framework also takes care of non-real-time traffic by ensuring certain level of fairness. Our simulation, applied to scenarios where users simultaneously run different types of applications, confirms that the proposed QoE-oriented cross-layer framework leads to significant improvement in terms of maximizing user-perceived quality as well as maintaining fairness among users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 3GPP Technical Report 25.848. (2004). 3rd generation partnership project, technical specification group radio access network; physical layer aspects of UTRA high speed downlink packet access (release 4). Technical report.

  2. Alfayly, A., Mkwawa, I. H., Sun, L., & Ifeachor, E. (2012). QoE-based performance evaluation of scheduling algorithms over LTE. In 2012 IEEE Globecom workshops (pp. 1362–1366). doi:10.1109/GLOCOMW.2012.6477781. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6477781.

  3. Ali, S., Zeeshan, M., & Naveed, A. (2013). A capacity and minimum guarantee-based service class-oriented scheduler for LTE networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 67. doi:10.1186/1687-1499-2013-67. http://jwcn.eurasipjournals.com/content/2013/1/67.

  4. Alouini, M., & Goldsmith, A. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066. doi:10.1109/25.775355. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=775355.

  5. Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., Mogensen, P., & Lopez-Soler, J. M. (2010). QoE oriented cross-layer design of a resource allocation algorithm in beyond 3G systems. Computer Communications, 33(5), 571–582. doi:10.1016/j.comcom.2009.10.016. http://linkinghub.elsevier.com/retrieve/pii/S0140366409002837.

  6. Avramova, A. P., Yan, Y., & Dittmann, L. (2012). Cross layer scheduling algorithm for LTE downlink. In 2012 20th telecommunications forum (TELFOR) (pp. 307–310). doi:10.1109/TELFOR.2012.6419208. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6419208.

  7. Aydin, M. E., Kwan, R., & Wu, J. (2012). Multiuser scheduling on the LTE downlink with meta-heuristic approaches. Physical Communication. doi:10.1016/j.phycom.2012.01.004. http://linkinghub.elsevier.com/retrieve/pii/S1874490712000134.

  8. Bai, B., Cao, Z., Chen, W., & Letaief, K. B. (2008). QoS guaranteed cross-layer multiple traffic scheduling in TDM-OFDMA wireless network. In 2008 IEEE international conference on communications (Vol. 60472027, pp. 2895–2899). IEEE. doi:10.1109/ICC.2008.545. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4533581.

  9. Biernacki, A., Metzger, F., & Tutschku, K. (2012). On the influence of network impairments on YouTube video streaming. Journal of Telecommunications and Information Technology (JTIT) (3), 83–90. http://www.nit.eu/czasopisma/JTIT/2012/3/83.pdf.

  10. Cheng, X., & Mohapatra, P. (2012). Quality-optimized downlink scheduling for video streaming applications in LTE networks. In 2012 IEEE global communications conference (GLOBECOM) (pp. 1914–1919). doi:10.1109/GLOCOM.2012.6503395. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6503395.

  11. Cho, Y., Kuo, C. C. J., Huang, R., & Lima, C. (2009). Cross-layer design for wireless video streaming. In GLOBECOM 2009—2009. IEEE global telecommunications conference (pp. 1–5). doi:10.1109/GLOCOM.2009.5425211. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5425211.

  12. Dimitrova, D. C., Heijenk, G., Berg, J. L. V. D., & Yankov, S. (2011). Scheduler-dependent inter-cell interference and its impact on LTE uplink performance at flow level. Lecture Notes in Computer Science, 6649, 285–296. doi:10.1007/978-3-642-21560-5_24.

    Article  Google Scholar 

  13. Fitzek, F., & Reisslein, M. (2001). MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network, 15(6), 40–54. doi:10.1109/65.967596. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=967596.

  14. Girici, T., Zhu, C., Agre, J. R., & Ephremides, A. (2010). Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints. Journal of Communications and Networks, 12(1), 30–42. doi:10.1109/JCN.2010.6388432. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6388432.

  15. Indumathi, G., & Murugesan, K. (2011). A cross-layer resource scheduling with qos guarantees using adaptive token bank fair queuing algorithm in wireless networks. Journal of Engineering Science and Technology (JESTEC), 6(3), 260–267. http://jestec.taylors.edu.my/V6Issue3.htm.

  16. ITU-T Recommendation BT. 500-9. (2002). Methodology for subjective assessment of the quality of television picture. Technical report.

  17. Jain, R. (1991). The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation, and modeling. Wiley professional computing. London: Wiley. http://books.google.com.my/books?id=HetQAAAAMAAJ.

  18. Ju, Y., Lu, Z., Ling, D., Wen, X., Zheng, W., & Ma, W. (2013). QoE-based cross-layer design for video applications over LTE. Multimedia Tools and Applications,. doi:10.1007/s11042-013-1413-0.

    Google Scholar 

  19. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 237–252.

    Article  MATH  Google Scholar 

  20. Khan, S., Duhovnikov, S., Steinbach, E., & Kellerer, W. (2007). MOS-based multiuser multiapplication cross-layer optimization for mobile multimedia communication. Advances in Multimedia, 2007(1), 1–11. doi:10.1155/2007/94918. http://www.hindawi.com/journals/am/2007/094918/abs/.

  21. Kwan, R., Leung, C., & Zhang, J. (2009). Proportional fair multiuser scheduling in LTE. IEEE Signal Processing Letters, 16(6), 461–464. doi:10.1109/LSP.2009.2016449. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4838885.

  22. Lai, W. K., & Yang, K. T. (2013). Cross-layer dual domain scheduler for 3GPP-long term evolution. Journal of Networks, 8(1), 189–196. doi:10.4304/jnw.8.1.189-196. http://ojs.academypublisher.com/index.php/jnw/article/view/9062.

  23. Liang, Y., Apostolopoulos, J., & Girod, B. (2008). Analysis of packet loss for compressed video: Effect of burst losses and correlation between error frames. IEEE Transactions on Circuits and Systems for Video Technology, 18(7), 861–874. doi:10.1109/TCSVT.2008.923139. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4490280.

  24. Li, F., Liu, G. (2009). Compressed-domain-based transmission distortion modeling for precoded H.264/AVC video. IEEE Transactions on Circuits and Systems for Video Technology, 19(12), 1908–1914. doi:10.1109/TCSVT.2009.2031457. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5229294.

  25. Lu, Z., & Ling, D. (2011). Gradient projection based QoS driven cross-layer scheduling for video applications. In 2011 IEEE international conference on multimedia and expo (pp. 1–6). doi:10.1109/ICME.2011.6012022. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6012022.

  26. Lu, Z., Yang, Y., Wen, X., Ju, Y., & Zheng, W. (2011). A cross-layer resource allocation scheme for ICIC in LTE-advanced. Journal of Network and Computer Applications, 34(6), 1861–1868. doi:10.1016/j.jnca.2010.12.019. http://linkinghub.elsevier.com/retrieve/pii/S1084804511000063.

  27. Ma, W., Zhang, H., Wen, X., Zheng, W., & Lu, Z. (2011). Utility-based cross-layer multiple traffic scheduling for MU-OFDMA. doi:10.4156/aiss.vol3.issue8.15. https://www.holaportal.com/publication/utility-based-cross-layer-multiple-traffic-scheduling-for-muofdma-170323/.

  28. Nasimi, M., Kousha, M., & Hashim, F. (2013) QoE-oriented cross-layer downlink scheduling for heterogeneous traffics in LTE networks. In IEEE 11th Malaysia international conference on communications. IEEE

  29. Patachaianand, R., & Sandrasegaran, K. (2007). Opportunistic contention-based feedback protocol for downlink OFDMA systems with mixed traffic. doi:10.1007/978-3-642-10467-1_115.

  30. Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513. doi:10.1109/TVT.2010.2091660. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5634134.

  31. Radhakrishnan, R., & Nayak, A. (2012). Cross layer design for efficient video streaming over LTE using scalable video coding. In 2012 IEEE international conference on communications (ICC) (pp. 6509–6513). doi:10.1109/ICC.2012.6364725. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6364725.

  32. Redana, S., Frediani, A., & Capone, A. (2008). Quality of service scheduling based on utility prediction. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–5). doi:10.1109/PIMRC.2008.4699722. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4699722.

  33. Saad, W., Dawy, Z., & Sharafeddine, S. (2012). A utility-based algorithm for joint uplink/downlink scheduling in wireless cellular networks. Journal of Network and Computer Applications, 35(1), 348–356. doi:10.1016/j.jnca.2011.08.002. http://linkinghub.elsevier.com/retrieve/pii/S1084804511001561.

  34. Sandrasegaran, K., Mohd Ramli, H. A., & Basukala, R. (2010). Delay-prioritized scheduling (DPS) for real time traffic in 3GPP LTE system. In 2010 IEEE wireless communication and networking conference (pp. 1–6). doi:10.1109/WCNC.2010.5506251. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5506251.

  35. Shakkottai, S., Rappaport, T., & Karlsson, P. (2003). Cross-layer design for wireless networks. IEEE Communications Magazine, 41(10), 74–80. doi:10.1109/MCOM.2003.1235598. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1235598.

  36. Singer, D., & Desineni, H. (2008). A general mechanism for RTP header extensions: RFC5285. https://tools.ietf.org/html/rfc5285.

  37. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032. doi:10.1109/49.848253. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=848253.

  38. Tantawy, M. M., Eldien, A. S. T., & Zaki, R. M. (2011). A novel cross-layer scheduling algorithm for long term-evolution (LTE) wireless system. Canadian Journal on Multimedia and Wireless Networks, 2(4), 57–62.

    Google Scholar 

  39. Thakolsri, S., Cokbulan, S., Jurca, D., Despotovic, Z., & Kellerer, W. (2011). QoE-driven cross-layer optimization in wireless networks addressing system efficiency and utility fairness. In 2011 IEEE GLOBECOM workshops (GC Wkshps) (pp. 12–17). IEEE. doi:10.1109/GLOCOMW.2011.6162395. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6162395.

  40. Thakolsri, S., Kellerer, W., & Steinbach, E. (2011). QoE-based cross-layer optimization of wireless video with unperceivable temporal video quality fluctuation. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE. doi:10.1109/icc.2011.5963296. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5963296.

  41. Thakolsri, S., Khan, S., Steinbach, E., & Kellerer, W. (2009). QoE-driven cross-layer optimization for high speed downlink packet access. Journal of Communications, 4(9), 669–680. doi:10.4304/jcm.4.9.669-680. http://ojs.academypublisher.com/index.php/jcm/article/view/1877.

  42. Turyagyenda, C., O’Farrell, T., & Guo, W. (2012). Long term evolution downlink packet scheduling using a novel proportional-fair-energy policy. In 2012 IEEE 75th vehicular technology conference (VTC Spring), Ici (pp. 1–6). IEEE. doi:10.1109/VETECS.2012.6240212. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6240212.

  43. Wan, Z., Xiong, N., Ghani, N., Vasilakos, A. V., & Zhou, L. (2013). Adaptive unequal protection for wireless video transmission over IEEE 802.11e networks. Multimedia Tools and Applications. doi:10.1007/s11042-013-1378-z. http://link.springer.com/10.1007/s11042-013-1378-z.

  44. Wang, H., & Liu, G. (2012). Priority and delay aware packet management framework for real-time video transport over 802.11e WLANs. Multimedia Tools and Applications. doi:10.1007/s11042-012-1131-z. http://link.springer.com/10.1007/s11042-012-1131-z.

  45. Wiegand, T., Sullivan, G., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576. doi:10.1109/TCSVT.2003.815165. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1218189.

  46. Zhang, R., Regunathan, S., & Rose, K. (2000). Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE Journal on Selected Areas in Communications, 18(6), 966–976. doi:10.1109/49.848250. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=848250.

  47. Zheng, Y. (2003). Simulation models with correct statistical properties for rayleigh fading channels. IEEE Transactions on Communications, 51(6), 920–928. doi:10.1109/TCOMM.2003.813259. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1209292.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Nasimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasimi, M., Hashim, F., Sali, A. et al. QoE-Driven Cross-Layer Downlink Scheduling for Heterogeneous Traffics Over 4G Networks. Wireless Pers Commun 96, 4755–4780 (2017). https://doi.org/10.1007/s11277-017-4416-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4416-8

Keywords

Navigation