Skip to main content
Log in

Design and Development of an Efficient EBG Structures Based Band Notched UWB Circular Monopole Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Band notched circular monopole antennas for ultra-wide band applications are proposed in this paper. The proposed antennas in this paper can reject worldwide interoperability for microwave access WiMAX band (3.3–3.8 GHz) and wireless local area network WLAN band (5–6 GHz). Antennas utilises mushroom-type electromagnetic band gap (EBG) structures and I-slot embedded edge located via (ELV) EBG structures to achieve band-notched designs. The advantages of band notched designs using EBG structures like notch-frequency tuning, dual-notch antenna designs and stable radiation pattern are also verified. Various antenna designs with slot in EBG structures, variations in placement of EBG structures, number of EBG structures and ELV type EBG structures are simulated. About 30% reduction in size of EBG structures is obtained if conventional mushroom type EBG is replaced by proposed I-slot embedded ELV-EBG structure. Fabricated and measured results are in good agreement with simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Balanis, C. A. (2012). Antenna theory analysis and design. New York: Wiley.

    Google Scholar 

  2. Lee, K. F., & Luk, K. M. (2011). Microstrip patch antennas. London: Imperial College Press.

    Google Scholar 

  3. Ghavami, M., Michael, L. B., & Kohno, R. (2007). Ultra-wideband signals and systems in communication engineering. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  4. Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54, 1453–1460.

    Article  Google Scholar 

  5. Chu, Q. X., & Yang, Y. Y. (2008). A compact ultra-wideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 56, 3637–3644.

    Article  MathSciNet  Google Scholar 

  6. Dong, Y. D., Hong, W., Kuai, Z. Q., & Chen, J. X. (2009). Analysis of planar ultra-wideband antennas with on-ground slot band-notched structures. IEEE Transactions on Antennas and Propagation, 57, 1886–1893.

    Article  Google Scholar 

  7. Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57, 3942–3950.

    Article  Google Scholar 

  8. Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57, 796–799.

    Article  Google Scholar 

  9. Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54, 1688–1692.

    Article  Google Scholar 

  10. Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41, 294–296.

    Article  Google Scholar 

  11. Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.

    Article  Google Scholar 

  12. Pancera, E., Modotto, D., Locatelli, A., Pigozzo, F. M., & Angelis, C. D. (2007). Novel design of UWB antenna with band-notch capability. In Proc. Eur. Conf. Wireless Technology (pp. 48–50).

  13. Kamgaing, T. (2003). High-impedance electromagnetic surfaces for mitigation of switching noise in high speed circuits. Ph.D. Dissertation, University of Maryland, USA.

  14. Sivenpiper, D. (1999). High-impedance electromagnetic surface. Ph.D Thesis. Department of Electrical Engineering, University of California, Los Angeles, CA.

  15. Yang, F., & Rahmat-Samii, Y. (2003). Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Transactions on Antennas and Propagation, 51, 2691–2703.

    Article  Google Scholar 

  16. Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.

    Article  Google Scholar 

  17. Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.

    Article  Google Scholar 

  18. Liu, L., Cheung, S. W., & Yuk, T. I. (2015). Compact MIMO antenna for portable UWB applications with band-notched characteristic. IEEE Transactions on Antennas and Propagation, 63, 1917–1924.

    Article  MathSciNet  Google Scholar 

  19. Li, Q., & Feresidis, A.-P. (2015). Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles. IEEE Transactions on Antennas and Propagation, 63, 1168–1171.

    Article  MathSciNet  Google Scholar 

  20. Majid, H. A., Rahim, M. K. A., Hamid, M. R., Yusoff, M. F. M., Murad, N. A., Samsuri, N. A., et al. (2015). Wideband antenna with reconfigurable band notched using EBG structure. Progress in Electromagnetics Research Letters, 54, 7–13.

    Article  Google Scholar 

  21. Barth, S., & Iyer, A. K. (2016). A miniaturized uniplanar metamaterial-based EBG for parallel-plate mode suppression. IEEE Transactions on Microwave Theory and Techniques, 64, 1176–1185.

    Article  Google Scholar 

  22. Sarkar, D., Sarkar, K., & Saurav, K. (2014). A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 13, 396–399.

    Article  Google Scholar 

  23. Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61, 3952–3960.

    Article  Google Scholar 

  24. Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60, 2987–2992.

    Article  Google Scholar 

  25. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40, 1246–1248.

    Article  Google Scholar 

  26. Zheng, Q. R., Fu, Y., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56, 1656–1660.

    Article  Google Scholar 

  27. Boutayeb, H., & Denidni, T. A. (2007). Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Transactions on Antennas and Propagation, 55, 3140–3145.

    Article  Google Scholar 

  28. Yang, X., Sun, Q., Jing, Y., Cheng, Q., Zhon, X., Kong, H., et al. (2011). Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto dielectrics. IEEE Transactions on Antennas and Propagation, 59, 373–378.

    Article  Google Scholar 

  29. Luukkonen, O., Simovski, C., Granet, G., Goussetis, G., Lioubtchenko, D., Rai, A., et al. (2008). Simple and accurate analytical model of planar grids and high impedance surface comprising metal strips or patches. IEEE Transactions on Antennas and Propagation, 56, 1624–1632.

    Article  Google Scholar 

  30. Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology, 10, 79–88.

    Google Scholar 

  31. Yang, F., & Rahmat, Y. (2009). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press.

    Google Scholar 

  32. Ansoft’sHFSS [Online]. http://www.ansoft.com.

  33. Rajo-Iglesias, E., Inclan-Sanchez, L., Vazquez-Roy, J. L., & Garcia-Muoz, E. (2007). Size reduction of mushroom-type EBG surfaces by using edge-located vias. IEEE Microwave and Wireless Components Letters, 17, 670–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaglan, N., Kanaujia, B.K., Gupta, S.D. et al. Design and Development of an Efficient EBG Structures Based Band Notched UWB Circular Monopole Antenna. Wireless Pers Commun 96, 5757–5783 (2017). https://doi.org/10.1007/s11277-017-4446-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4446-2

Keywords

Navigation