Skip to main content
Log in

Secrecy Outage of Dual-Hop Amplify-and-Forward Relay System with Diversity Combining at the Eavesdropper

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a dual-hop amplify-and-forward relay system is considered with an eavesdropper where each link undergoes independent, non-identical, flat Rayleigh fading. The eavesdropper is capable of diversity combining the direct and relayed communication from the source using maximal ratio combining (MRC) and selection combining (SC). Closed-form upper and lower bounds on secrecy outage probability are derived. Closed-form approximate secrecy outage probability and ergodic secrecy rate is also obtained when source–relay link average signal-to-noise ratio (SNR) is high. Asymptotic analysis is presented when dual-hop links have equal or unequal average SNR. It is found that SC has both the secrecy outage and ergodic secrecy rate performances are better than MRC. To achieve the same secrecy outage performance of SC, MRC requires relatively higher SNR at lower rate. MRC also requires relatively higher SNR to achieve same secrecy rate performance of SC when eavesdropper link quality degrades. It is observed that lower bound for secrecy outage is tight and tends towards secrecy outage as SNR increases. It is interesting to find that either one of the dual-hop link can limit the performances even if the other link average SNR is infinitely high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387. doi:10.1002/j.1538-7305.1975.tb02040.x.

    Article  MATH  MathSciNet  Google Scholar 

  2. Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy capacity of fading channels. IEEE Transactions of Information Theory, 54(10), 4687–4698.

    Article  MATH  MathSciNet  Google Scholar 

  3. Liang, Y., Poor, H., et al. (2009). Information theoretic security. Foundations and Trends in Communications and Information Theory, 5(4–5), 355–580.

    MATH  Google Scholar 

  4. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. (2008). Wireless information-theoretic security. IEEE Transactions of Information Theory, 54(6), 2515–2534.

    Article  MATH  MathSciNet  Google Scholar 

  5. Barros, J., Rodrigues, M. R. D. (2006). Secrecy Capacity of Wireless Channels. InProceedings of the IEEE international symposium on information theory (ISIT) (pp. 356–360).

  6. Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions of Information Theory, 24(3), 339–348.

    Article  MATH  MathSciNet  Google Scholar 

  7. Luo, S., Li, J., & Petropulu, A. P. (2013). Uncoordinated cooperative jamming for secret communications. IEEE Transactions on Information Forensics and Security, 8(7), 1081–1090.

    Article  Google Scholar 

  8. Gerbracht, S., Scheunert, C., & Jorswieck, E. (2012). Secrecy outage in MISO systems with partial channel information. IEEE Transactions on Information Forensics and Security, 7(2), 704–716.

    Article  Google Scholar 

  9. Lai, L., & Gamal, H. E. (2008). The Relay–Eavesdropper channel: Cooperation for secrecy. IEEE Transactions of Information Theory, 54(9), 4005–4019.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dong, L., Han, Z., Petropulu, A., & Poor, H. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactionns of Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  11. Li, J., Petropulu, A., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactionns of Signal Processing, 59(10), 4985–4997.

    Article  MathSciNet  Google Scholar 

  12. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.

    Article  Google Scholar 

  13. Krikidis, I., Thompson, J., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions of Wireless Communications, 8(10), 5003–5011.

    Article  Google Scholar 

  14. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  15. Bao, V. N. Q., & Trung, N. L. (2012). Multihop decode-and-forward relay networks: Secrecy analysis and relay position optimization. REV Journal on Electronics and Communications, 2(1–2), 33–41.

    Google Scholar 

  16. Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop amplify-and-forward system and its application to relay selection. InProceedings of the IEEE 79th vehicular technology conference (VTC Spring).

  17. Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop af relay system with relay selection without eavesdropper’s CSI. IEEE Communications Letters, 18(10), 1759–1762.

    Article  Google Scholar 

  18. Hwang, K.-S., & Ju, M. (2014). Secrecy outage probability of amplify-and-forward transmission with multi-antenna relay in presence of eavesdropper. In Proceedings of the IEEE international conference on communications (ICC) (pp. 5408–5412).

  19. Gabry, F., Salimi, S., Thobaben, R., & Skoglund, M. (2013). High SNR performance of amplify-and-forward relaying in Rayleigh fading wiretap channels. InProceedings of the Iran workshop on communication and information theory (IWCIT) (pp. 1–5).

  20. Zou, Y., Zhu, J., Zheng, B., & Yao, Y.-D. (2010). An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Transactions of Signal Processing, 58(10), 5438–5445.

    Article  MathSciNet  Google Scholar 

  21. Proakis, J. (2001). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Hasna, M. O., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.

    Article  Google Scholar 

  23. Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. EEE Transactions on Communications, 52(1), 130–135.

    Article  Google Scholar 

  24. Karagiannidis, G., Tsiftsis, T., Mallik, R., Sagias, N., & Kotsopoulos, S. (2005). Closed-form bounds for multihop relayed communications in Nakagami-m fading. In Proceedings of the IEEE international conference on communications (ICC) (Vol. 4, pp. 2362–2366).

  25. Karagiannidis, G., Tsiftsis, T., & Mallik, R. (2006). Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54(1), 18–22.

    Article  Google Scholar 

  26. Laneman, J., & Wornell, G. (2000). Energy-efficient antenna sharing and relaying for wireless networks. Proceedings of the IEEE Wireless Communications and Networking Confernce (WCNC)., 1, 7–12.

    Article  Google Scholar 

  27. Farhadi, G., & Beaulieu, N. (2009). On the ergodic capacity of multi-hop wireless relaying systems. IEEE Transactions on Wireless Communications, 8(5), 2286–2291.

    Article  Google Scholar 

  28. Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels. New York: Wiley.

    Book  Google Scholar 

  29. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes. New York: McGraw-Hill Book Company.

    Google Scholar 

  30. Akkouchi, M. (2008). On the convolution of exponential distributions. The Journal of Chungcheong Mathematical Society, 21(4), 501–510.

    Google Scholar 

  31. Prudnikov, A. P., Brychkov, Y., & Marichev, O. (1986). Integrals and series, volume 1: Elementary functions. New York: Gordon & Breach Science Publishers.

    MATH  Google Scholar 

  32. Prudnikov, A. P., Brychkov, Y., & Marichev, O. (1986). Integrals and series, volume 2: Special functions. New York: Gordon & Breach Science Publishers.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmoy Kundu.

Appendices

Appendix 1: Proof of Proposition 1

Proof

CDF and the PDF of the random variable T can be found in [16, 17]. For the convenience of the reader we deduce the the CDF of the RV T conditioned on \(X, F_{T|X}(t|x)\), here again. From the definition of CDF we get

$$\begin{aligned} F_{T|X}(t|x)&= \mathbb {P}[\min (x,y)\le t|x]\nonumber \\&=1-\mathbb {P}[\min (x,y)> t|x]\nonumber \\&=1-\mathbb {P}[x> t|x]\mathbb {P}[y> t|x]\nonumber \\&=\left\{ \begin{array}{ll} 1-\mathbb {P}[y> t|x]&{} \quad t < x\\ 1 &{} \quad t \ge x\\ \end{array} \right. . \end{aligned}$$
(57)

We can write (57) from the fact that

$$\begin{aligned} \mathbb {P}[x> t|x]=\left\{ \begin{array}{ll} 1 &{} \quad t < x\\ 0 &{} \quad t \ge x\\ \end{array} \right. . \end{aligned}$$
(58)

As X and Y are independent, by simply using CDF of RV Y i.e. CDF of exponential distribution in (57) we get the CDF of the a RV T as

$$\begin{aligned} F_{T|X}(t|x)=\left\{ \begin{array}{ll} 1-e^{-\beta _yt} &{} \quad t < x\\ 1 &{} \quad t \ge x\\ \end{array} \right. . \end{aligned}$$
(59)

By differentiating (59) with respect to t we get the PDF as

$$\begin{aligned} f_{T|X}(t|x)=\left\{ \begin{array}{ll} \beta _ye^{-\beta _yt} &{} \quad t<x\\ \delta (t-x)e^{-\beta _yx} &{}\quad t \ge x\\ \end{array} \right. . \end{aligned}$$
(60)

From the definition, MGF expressed in (9) can be found by simply evaluating the following integrals

$$\begin{aligned} M_{T|X}(s|x)&=\int _0^x \beta _y e^{-(\beta _y-s)t}dt + \int _ x^\infty e^{-\beta _y x} e^{st} \delta (t-x)dt. \end{aligned}$$
(61)

Appendix 2: Proof of Corollary 1

Proof

Directly following the proof of proposition 1, the CDF is obtained in [16, 17] as

$$\begin{aligned} F_T(t|x) =\left\{ \begin{array}{ll} 1-e^{-2\beta _{y}t} &{} \quad t < \frac{x}{2}\\ 1 &{} \quad t \ge \frac{x}{2}\\ \end{array} \right. . \end{aligned}$$
(62)

The corresponding PDF is derived in [16, 17] by differentiating (62) as

$$\begin{aligned} f_T(t|x) =\left\{ \begin{array}{ll} 2\beta _{y} e^{-2\beta _{y}t} &{} \quad t < \frac{x}{2}\\ \delta \left(t-\frac{x}{2}\right)e^{-\beta _{y}x} &{} \quad t \ge \frac{x}{2}\\ \end{array} \right. . \end{aligned}$$
(63)

Using standard derivation of MGF as in (61), we can find MGF of RV T in (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, C., Jindal, A. & Bose, R. Secrecy Outage of Dual-Hop Amplify-and-Forward Relay System with Diversity Combining at the Eavesdropper. Wireless Pers Commun 97, 539–563 (2017). https://doi.org/10.1007/s11277-017-4518-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4518-3

Keywords

Navigation