Skip to main content
Log in

Vertical Response Microstrip Lowpass Filter Using Stepped Impedance Lines and Radial Resonators

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

By exploiting stepped impedance and radial resonators, a new microstrip lowpass filter (LPF) with a vertical transition band is proposed, analyzed and fabricated. Three resonators are properly combined to form a high performance filter. To validate the design theory, each resonator is analyzed by L–C equivalent circuit and transfer function and also equation of first transmission zero (TZ) in each resonator are computed. The proposed filter has a cut-off frequency at 2.086 GHz. By generating three TZs, a narrow transition band of 0.078 GHz and a roll-off rate of 474 dB/GHz are attained. Moreover, the filter occupies only 0.118 × 0.272 \(\lambda_{g}^{2}\), where λ g is the guided wavelength at 2.086 GHz. Furthermore, a rejection level better than 30 dB in a wide stopband is obtained. Finally, the proposed LPF achieves an extremely high figure-of-merit of 71,330.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mirzaee, M., & Virdee, B. S. (2013). Realisation of highly compact planar lowpass filter for UWB RFID applications. IEE Electronics Letters, 49(22), 1396–1398.

    Article  Google Scholar 

  2. Hayati, M., Shama, F., & Abbasi, H. (2013). Compact microstrip lowpass filter with wide stopband and sharp roll-off using tapered resonator. International Journal of Electronics, 100(12), 1751–1759.

    Article  Google Scholar 

  3. Hayati, M., & Lotfi, A. (2010). Elliptic-function lowpass filter with sharp cutoff frequency using slit-loaded tapered compact microstrip resonator cell. IEE Electronics Letters, 46(2), 143–144.

    Article  Google Scholar 

  4. Wang, J. P., Ge, L., Guo, Y.-X., & Wu, W. (2010). Miniaturised microstrip lowpass filter with broad stopband and sharp roll-off. IEE Electronics Letters, 46(8), 573–575.

    Article  Google Scholar 

  5. Li, J.-L., Qu, S.-W., & Xue, Q. (2009). Compact microstrip lowpass filter with sharp roll-off and wide stop-band. Electronics Letters, 45(2), 110–111.

    Article  Google Scholar 

  6. Hayati, M., Naderi, S., & Jafari, F. (2014). Compact microstrip lowpass filter with sharp roll-off using radial resonator. IEE Electronics Letters, 50(10), 761–762.

    Article  Google Scholar 

  7. Sariri, H., Rahmani, Z., Lalbakhsh, A., & Majidifar, S. (2013). Compact LPF using Tshaped resonator. Frequenz, 67(1–2), 17–20.

    Google Scholar 

  8. Karimi, G., Siahkamari, H., Khamin Hamedani, F., & Lalbakhsh, A. (2015). Design of modified Z-shaped and T-shaped microstrip filter based on transfer function analysis. Wireless Personal Communication, 82(4), 2005–2016.

    Article  Google Scholar 

  9. Dehghani, K., Karimi, G., Lalbakhsh, A., & Maki, S. V. (2014). Design of lowpass filter using novel stepped impedance resonator. IEE Electronics Letters, 50(1), 37–39.

    Article  Google Scholar 

  10. Karimi, G., Lalbakhsh, A., & Siahkamari, H. (2013). Design of sharp roll-off lowpass filter with ultra wide stopband. IEEE Microwave and Wireless Components Letters, 23(6), 303–305.

    Article  Google Scholar 

  11. Zhang, B., Shaosheng, L., & Jianming, H. (2015). Compact lowpass filter with wide stopband using coupled rhombic stubs. IEE Electronics Letters, 51(3), 264–266.

    Article  Google Scholar 

  12. Hayati, M., Gholami, M., Vaziri, H. S., & Zaree, T. (2015). Design of microstrip lowpass filter with wide stopband and sharp roll-off using hexangular shaped resonator. IEE Electronics Letters, 51(1), 69–71.

    Article  Google Scholar 

  13. Liu, S., Xu, J., & Xu, Z. (2015). Compact lowpass filter with wide stopband using stepped impedance hairpin units. IEE Electronics Letters, 51(1), 67–69.

    Article  Google Scholar 

  14. Karimi, G., Lalbakhsh, A., Dehghani, K., & Siahkamari, H. (2015). Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified U-shaped resonator. ETRI Journal, 37(5), 945–950.

    Article  Google Scholar 

  15. Mousavi, S. M. H., Makki, S. V. A., Hooshngi, S., Siahkamari, H., Alirezaee, S., & Ahmadi, M. (2015). High performance LPF structure with sharp roll-off and low VSWR. IEE Electronics Letters, 51(24), 2017–2019.

    Article  Google Scholar 

  16. Siahkamari, H., Heidarinezhad, E., Zarayeneh, E., Malakooti, S. A., Mousavi, S. M. H., & Siahkamari, P. (2015). Design of compact microstrip low-pass filter with analytical sharpness of transition band. International Journal of Microwave and Wireless Technologies, 8(7), 1017–1022. doi:10.1017/S1759078715000689.

  17. Mousavi, S. M. H., Makki, S. V. A., & Siahkamari, H. (2016). Design of microstrip lowpass filter using bend configuration with excellent sharpness in transition band. Frequenz, 70(5–6), 237–243.

    Google Scholar 

  18. Hong, J. S., & Lancaster, M. J. (2001). Microstrip filters for RF/microwave applications. New York: Wiley.

    Book  Google Scholar 

  19. Wadell, B.C. (1991). Transmission line design handbook. Norwood, MA: Artech House.

Download references

Acknowledgements

The authors would like to thank Mr. Saeed Raziani, for fabrication and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Hadi Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M.H., Makki, S.V.AD., Raziani, S. et al. Vertical Response Microstrip Lowpass Filter Using Stepped Impedance Lines and Radial Resonators. Wireless Pers Commun 97, 633–645 (2017). https://doi.org/10.1007/s11277-017-4527-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4527-2

Keywords

Navigation