Skip to main content
Log in

An Eigen Domain Transmission Scheme for MIMO Systems Under Narrowband Interference

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an eigen domain transmission scheme (ETS) to establish reliable and effective communication for multiple-input-multiple-output (MIMO) systems suffering from narrowband interference (NBI). At the transmitter, assuming that the statistical information of the NBI is known, a precoding is developed to divide the channel into multiple subchannels in the eigen domain of the NBI. Then, the transmission scheme is designed to increase the system capacity by exploiting the difference among the subchannels. Specifically, we design a practical eigen domain coding (PEC) scheme for the \({2 \times 2}\) MIMO system. Compared with the eigen domain interference rejection combining, Simulations show that the proposed ETS has about a 0.8 dB gain for the \({1 \times 2}\) single-input-multiple-output system, and the proposed PEC has about a 4.5 dB gain for the \({2\times 2}\) MIMO system, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  2. Li, X., Wang, J., Li, L., & Charles, C. (2016). Cavalcante, “capacity bounds on the ergodic capacity of distributed MIMO systems over K fading channels”. KSII Transactions on Internet and Information Systems, 10(7), 2992–3009.

    Google Scholar 

  3. Wang, Z., Li, L., Tian, H., & Paulraj, A. (2016). User-centric precoding designs for the non-regenerative MIMO two-way relay systems. IEEE Communications Letters, 20(10), 1935–1938.

    Article  Google Scholar 

  4. Shobowale, Y. M., & Hamdi, K. A. (2009). A unified model for interference analysis in unlicensed frequency bands. IEEE Transactions on Wireless Communications, 8(5), 4004–4013.

    Article  Google Scholar 

  5. Marey, M., & Steendam, H. (2007). Analysis of the narrowband interference effect on OFDM timing synchronization. IEEE Transactions on Signal Processing, 55(9), 4558–4566.

    Article  MathSciNet  Google Scholar 

  6. Li, T., Mow, W. H., Lau, V. K. N., Siu, M., Cheng, R. S., & Murch, R. D. (2007). Robust joint interference detection and decoding for OFDM-based cognitive radio systems with unknown interference. IEEE Journal on Selected Areas in Communications, 25(3), 566–575.

    Article  Google Scholar 

  7. Wang, D., Jiang, L., & He, C. (2009). Robust noise variance and channel estimation for SC-FDE UWB systems under narrowband interference. IEEE Transactions on Wireless Communications, 8(6), 3249–3259.

    Article  Google Scholar 

  8. Shi, K., Zhou, Y., Kelleci, B., Fischer, T. W., Serpedin, E., & Karşılayan, Aİ. (2007). Impacts of narrowband interference on OFDM-UWB receivers: Analysis and mitigation. IEEE Transactions on Signal Processing, 55(3), 1118–1128.

    Article  MathSciNet  Google Scholar 

  9. Liu, F., Zhao, H., & Tang, Y. (2014). An eigen domain interference rejection combining algorithm for narrowband interference suppression. IEEE Communications Letters, 18(5), 813–816.

    Article  Google Scholar 

  10. Buzzi, S., Lops, M., & Poor, H. V. (2002). Code-aided interference suppression for DS/CDMA overlay systems. Proceedings of the IEEE, 90(3), 394–435.

    Article  Google Scholar 

  11. Abedi, O., & Yagoub, M. C. E. (2013). Efficient narrowband interference cancellation in ultra-wide-band rake receivers. IET Communications, 7(1), 57–64.

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, Z., Zhou, S., Catipovic, J., & Willett, P. (2012). Parameterized cancellation of partial-band partial-block-duration interference for underwater acoustic OFDM. IEEE Transactions on Signal Processing, 60(4), 1782–1795.

    Article  MathSciNet  Google Scholar 

  13. Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal on Selected Areas in Communications, 2(4), 528–539.

    Article  Google Scholar 

  14. Li, Y., & Sollenberger, N. R. (1999). Adaptive antenna arrays for OFDM systems with cochannel interference. IEEE Transactions on Communications, 47, 217–229.

    Article  Google Scholar 

  15. Li, Q., Zhu, J., Li, Q., & Georghiades, C. N. (2008). Efficient spatial covariance estimation for asynchronous co-channel interference suppression in MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 7(12), 4849–4853.

    Article  Google Scholar 

  16. Couch, L. W, I. I. (2013). Digital and analog communication systems (8th ed.). London: Prentice Hall.

    Google Scholar 

  17. Haykin, S. (2001). Adaptive filter theory (4th ed.). London: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, F. & Tang, Y. An Eigen Domain Transmission Scheme for MIMO Systems Under Narrowband Interference. Wireless Pers Commun 97, 1015–1031 (2017). https://doi.org/10.1007/s11277-017-4549-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4549-9

Keywords

Navigation