Skip to main content
Log in

Performance Evaluation of Wireless Communication Systems over Composite \({\varvec{\alpha}}{-}{\varvec{\mu}}/\)Gamma Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The composite \(\alpha {-}\mu /\)gamma distribution is considered in this paper. Specifically, we derived closed-form expressions for the power probability density function (PDF) and the cumulative density function (CDF). We then use the PDF and the CDF to derive novel closed-form expressions for the outage probability, the average symbol error rate, and the average channel capacity over the composite \(\alpha {-}\mu /\)gamma fading channels. All derived expressions are valid for integer and non-integer values of the fading parameters. Some representative numerical examples are provided to study the impact of the fading and shadowing parameters on the system performance. Furthermore, the numerical results are compared with Monte-Carlo simulations. Both results demonstrate excellent agreement which validates our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  2. Hansen, F., & Finn, M. I. (1977). Mobile fading—Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  3. Raghavan, R. S. (1991). A model for spatially correlated radar clutter. IEEE Aerospace and Electronic Systems, 27(2), 268–275.

    Article  Google Scholar 

  4. Abdi, A., & Kaveh, M. (1998). \(k\) distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  5. Yilmaz, F., & Alouini, M. (2010). A new simple model for composite fading channels: Second order statistics and channel capacity. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, ISWCS (pp. 676–680)

  6. Shankar, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28, 233–238.

    Article  Google Scholar 

  7. Badarneh, O. S. (2015). Error rate analysis of \(m\)-ary phase shift keying in \(\alpha {-}\eta {-}\mu \) fading channels subject to additive Laplacian noise. IEEE Communications Letters, 19(7), 1253–1256.

    Article  Google Scholar 

  8. Shankar, P. (2013). Maximal ratio combining (MRC) in shadowed fading channels in presence of shadowed fading cochannel interference (CCI). Wireless Personal Communications, 68(1), 15–25.

    Article  Google Scholar 

  9. Lei, X., & Fan, P. (2010). On the error performance of \(M\)-ary modulation schemes on Rician–Nakagami fading channels. Wireless Personal Communications, 53(4), 591–602.

    Article  Google Scholar 

  10. Kapucu, N., Bilim, M., & Develi, I. (2014). A closed-form MGF expression of instantaneous SNR for weibull fading channels. Wireless Personal Communications, 77(2), 1605–1613.

    Article  Google Scholar 

  11. Lee, H. (2015). High-SNR approximate closed-form formulas for the average error probability of \(M\)-ary modulation schemes over Nakagami-\(q\) fading channels. In J. Park, Y. Pan, H.-C. Chao, & G. Yi (Eds.), Ubiquitous Computing Application and Wireless Sensor, Series Lecture Notes in Electrical Engineering (Vol. 331, pp. 11–22). Netherlands: Springer.

    Google Scholar 

  12. Miridakis, N. I. (2015). Performance analysis of EGC receivers over generalized-\(\cal{K}\) (\(\cal{K}_{G}\)) fading channels. Wireless Personal Communications, 80(1), 167–173.

    Article  Google Scholar 

  13. Zhang, J., Matthaiou, M., Tan, Z., & Wang, H. (2012). Performance analysis of digital communication systems over composite \(\eta {-}\mu \)/gamma fading channels. IEEE Transactions on Vehicular Technology, 61(7), 3114–3124.

    Article  Google Scholar 

  14. Ansari, I. S., Yilmaz, F., Alouini, M.-S., & Kucur, O. (2014). New results on the sum of gamma random variates with application to the performance of wireless communication systems over Nakagami-m fading channels. Transactions on Emerging Telecommunications Technologies,. doi:10.1002/ett.2912.

    Google Scholar 

  15. Stamenović, G., Panić, S. R., Stefanović, D. R. Č., & Stefanović, M. (2014). Performance analysis of wireless communication system in general fading environment subjected to shadowing and interference. EURASIP Journal on Wireless Communications and Networking, 2014, 1–8.

    Article  Google Scholar 

  16. Sofotasios, P. C., & Freear, S. (2015). A generalized non-linear composite fading model. CoRR, arXiv:1505.03779.

  17. Yacoub, M. D. (2002). The \(\alpha {-}\mu \) distribution: A general fading distribution. In Proceedings of the IEEE PIMRC, September 15–18, 2002, pp. 629–629.

  18. Shankar, P. M. (2011). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60(2), 191–213.

    Article  Google Scholar 

  19. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals and series: More special functions (Vol. 3). New York: Gordon & Breach Science Publishers, Inc.

    MATH  Google Scholar 

  20. Kilbas, A., & Saigo, M. (2004). H-transforms : Theory and applications (Analytical Method and Special Function) (1st ed.). Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  21. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). California: Academic Press.

    MATH  Google Scholar 

  22. Mathai, A., & Saxena, R. (1978). The H-function with applications in statistics and other disciplines. New Delhi: Wiley Eastern.

    MATH  Google Scholar 

  23. Nakagami, M. (1960). The \(m\)-distribution-a general formula of intensity distribution of rapid fading. In Proceedings of the symposium statistical methods radio wave propagation (pp. 3–36). New York, NY, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamah S. Badarneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badarneh, O.S. Performance Evaluation of Wireless Communication Systems over Composite \({\varvec{\alpha}}{-}{\varvec{\mu}}/\)Gamma Fading Channels. Wireless Pers Commun 97, 1235–1249 (2017). https://doi.org/10.1007/s11277-017-4563-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4563-y

Keywords

Navigation