Skip to main content
Log in

Substrate Integrated Waveguide Based High Gain Planar Antipodal Linear Tapered Slot Antenna with Dielectric Loading for 60 GHz Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The 60 GHz band has the potential to provide high speed wireless communication. Substrate integrated waveguide (SIW) fed millimeter wave high gain antipodal linear tapered slot antenna (ALTSA) is presented in this paper. To obtain high gain the dielectric loading in addition to the corrugation structure is applied to the ALTSA. The use of SIW technology allows a highly efficient, compact and low cost planar design. The antenna is designed and simulated in an electromagnetic field simulation tool. A single element ALTSA is designed first. Then SIW power divider is used for designing 1 × 4 ALTSA array. To validate the proposed design, prototypes have been fabricated and measured. The simulated results agree well with the measured values which validates the proposed design. The measured return loss of single-element ALTSA and 1 × 4 ALTSA array is better than 12 dB over the entire 60 GHz band (57–64 GHz). The measured gain for single-element ALTSA and 1 × 4 ALTSA array is 18.7 ± 0.4 dBi and 22.9 ± 0.6 dBi respectively over the 60 GHz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Smulders, P. (2002). Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Communications Magazine, 40(1), 140–147.

    Article  Google Scholar 

  2. Valdes-Garcia, A., Reynolds, S., Natarajan, A., Kam, D., Liu, D., Lai, J. W., et al. (2011). Single element and phased array transceiver chipsets for 60 GHz Gb/s communications. IEEE Communications Magazine, 49(4), 120–131.

    Article  Google Scholar 

  3. Bozzi, M., Perregrini, L., Wu, K., & Arcioni, P. (2009). Current and future research trends in substrate integrated waveguide technology. Radioengineering, 18(2), 201–209.

    Google Scholar 

  4. Cheng, Y. J., Chen, P., Hong, W., Djerafi, T., & Wu, K. (2011). Substrate integrated waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems. IEEE Antennas and Propagation Magazine, 53(6), 18–30.

    Article  Google Scholar 

  5. Song, K., Chen, F., Zhang, F., & Fan, Y. (2014). Ka-band four-way power combiner based on multi-layer substrate integrated waveguide. Wireless Personal Communications, 79, 1703–1711.

    Article  Google Scholar 

  6. Bakhtafrooz, A., Borji, A., Busuioc, D., & Safavi-Naeini, S. (2010). Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides. Progress in Electromagnetics Research, 109, 475–491.

    Article  Google Scholar 

  7. Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50 GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59(4), 1051–1057.

    Article  Google Scholar 

  8. Briqech, Z., Sebak, A., & Denidni, T. A. (2015). High gain 60 GHz antipodal fermi tapered slot antenna with sine corrugation. Microwave and Optical Technology Letters, 57(1), 6–9.

    Article  Google Scholar 

  9. Hao, Z. C., Hong, W., Chen, J., Chen, X., & Wu, K. (2005). A novel feeding technique for antipodal linearly tapered slot antenna array. In Proceedings of IEEE MTT-S Microwave Symposium Digest (pp. 1641–1643).

  10. Sugawara, S., Maita, Y., Adachi, K., & Mizuno, K. (1998). Characteristics of a mm-wave tapered slot antenna with corrugated edges. In Proceedings of IEEE MTT-S Microwave Symposium Digest (pp. 533–536).

  11. Djerafi, T., & Wu, K. (2012). Corrugated substrate integrated waveguide antipodal linearly tapered slot antenna array fed by quasi-triangular power divider. Progress in Electromagnetic Research C, 26, 139–151.

    Article  Google Scholar 

  12. In, D. M., Pyo, S., Lee, H. S., Lee, M. J., & Kim, Y. S. (2010). Antipodal linearly tapered slot antenna using unequal half-circular slotted sides for gain improvements. In Proceedings of Asia-Pacific Microwave Conference (pp. 2036–2039).

  13. Ghassemi, N., & Wu, K. (2013). Planar high-gain dielectric-loaded antipodal linearly tapered slot antenna for E and W band gigabyte point to point wireless services. IEEE Transactions on Antennas and Propagation, 61(4), 1747–1755.

    Article  Google Scholar 

  14. Wang, H., Fang, D. G., Zhang, B., & Che, W. Q. (2010). Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Transactions on Antennas and Propagation, 58(3), 640–647.

    Article  Google Scholar 

  15. Wu, K., Deslandes, D., & Cassivi, Y. (2003). The substrate integrated circuits—a new concept for high-frequency electronics and optoelectronics. In Proceedings of Telecommunications in Modern Satellite, Cable and Broadcasting Service (Vol. 1, pp. III–X).

  16. Bozzi, M., Georgiadis, A., & Wu, K. (2011). Review of substrate-integrated waveguide circuits and antennas. IET Microwaves, Antennas and Propagation, 5(8), 909–920.

    Article  Google Scholar 

  17. Yngvesson, K. S., Korzeniowski, T. L., Kim, Y. S., Kollberg, E. L., & Johansson, J. F. (1989). The tapered slot antenna—A new integrated element for millimeter wave applications. IEEE Transactions on Microwave Theory and Techniques, 37(2), 365–374.

    Article  Google Scholar 

  18. Li, M., & Luk, K. M. (2014). A low-profile unidirectional printed antenna for millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 62(3), 1232–1237.

    Article  Google Scholar 

  19. Li, Y., & Luk, K. M. (2014). Low-cost high-gain and broadband substrate integrated waveguide fed patch antenna array for 60-GHz band. IEEE Transactions on Antennas and Propagation, 62(11), 5531–5538.

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, L., Guo, Y. X., & Sheng, W. X. (2013). Wideband high gain 60 GHz LTCC L-probe patch antenna array with a soft surface. IEEE Transactions on Antennas and Propagation, 61(4), 1802–1809.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are very much obliged to ISRO, Government of India, for the assistance provided for the execution of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishesh Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, N., Rama Rao, T. Substrate Integrated Waveguide Based High Gain Planar Antipodal Linear Tapered Slot Antenna with Dielectric Loading for 60 GHz Communications. Wireless Pers Commun 97, 1385–1400 (2017). https://doi.org/10.1007/s11277-017-4578-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4578-4

Keywords

Navigation