Skip to main content
Log in

Novel Multi-cell Precoding Schemes for TDD Massive MIMO Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Two novel multi-cell precoding schemes, maximum ratio combining precoding with base station cooperation (MRC-BSC) and zero forcing precoding with BS cooperation (ZF-BSC), are proposed for time division duplex massive multiple-input multiple-output system. By making full use of other cells (not target cell) channel estimate information and changing the matrix structure of classical single-cell maximum ratio combining (MRC) precoding and zero forcing (ZF) precoding, proposed precoding schemes are obtained to reduce inter-cell interference with low complexity. The expressions of lower bound per-user achievable rate of proposed precoding schemes for different uplink pilot reuse factors situations are derived through theoretic analysis. Simulation results demonstrate that the proposed MRC-BSC and ZF-BSC can always achieve higher rates than single-cell MRC precoding and ZF precoding. For each precoding scheme, the downlink achievable rate can be improved greatly when enlarging the uplink pilot reuse factor. In addition, the proposed precoding schemes does not affect (or even improve) other cells’ performance while improving the target cell’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  2. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  3. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2014). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Google Scholar 

  4. ICT-317669 METIS project. Positioning of multi-node/multi-antenna transmission technologies, July 2013.

  5. Elijah, O., Leow, C. Y., Tharek, A. R., Nunoo, S., & Iliya, S. Z. (2015). Mitigating pilot contamination in massive MIMO system—5G: An overview. In 10th Asian control conference (ASCC), pp. 1–6.

  6. Sohn, J. Y., Yoon, S. W., Moon, J. (2015). When pilots should not be reused across interfering cells in massive MIMO. In 2015 IEEE international conference on communication workshop (ICCW), pp. 1257–1263.

  7. Atzeni, I., Arnau, J., & Debbah, M. (2015). Fractional pilot reuse in massive MIMO systems. In 2015 IEEE international conference on communication workshop (ICCW), pp. 1030–1035.

  8. Bjornson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.

    Article  Google Scholar 

  9. Yang, H., & Marzetta, T. L. (2015). Performance of pilot reuse in multi-cell massive MIMO. In 2015 IEEE international black sea conference on communications and networking (BlackSeaCom), pp. 157–161.

  10. Muller, A., Kammoun, A., Bjornson, E., & Debbah, M. (2014). Efficient linear precoding for massive MIMO systems using truncated polynomial expansion. In 2014 IEEE 8th sensor array and multichannel signal processing workshop (SAM), pp. 273–276.

  11. Guo, M., Xie, G., Gao, J., & Liu, Y. (2015). Conditional regularized zero-forcing precoding for multi-cell massive MIMO network. In 2015 IEEE globecom workshops (GC Wkshps), pp. 1–6.

  12. Ren, Y., Xu, G., Wang, Y., Su, X., & Li, C. (2015). Low-complexity ZF precoding method for downlink of massive MIMO system. Electronics Letters, 51(5), 421–423.

    Article  Google Scholar 

  13. Ren, Y., Wang, Y., & Xu, G. (2015). Two-stage hybrid precoding for massive MIMO systems. In 2015 22nd international conference on telecommunications (ICT), pp. 294–297.

  14. Li, X., Bjornson, E., Larsson, E. G., Zhou, S., & Wang, J. (2015). A multi-cell MMSE precoder for massive MIMO systems and new large system analysis. In 2015 IEEE global communications conference (GLOBECOM), pp. 1–6.

  15. Liu, A., & Lau, V. (2014). Hierarchical interference mitigation for massive MIMO cellular networks. IEEE Transactions on Signal Processing, 62(18), 4786–4797.

    Article  MathSciNet  Google Scholar 

  16. Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.

    Article  Google Scholar 

  17. Khansefid, A., & Minn, H. (2015). Achievable downlink rates of MRC and ZF precoders in massive MIMO with uplink and downlink pilot contamination. IEEE Transactions on Communications, 63(12), 4849–4864.

    Article  Google Scholar 

  18. Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  19. Kay, S. M. (1993). Fundamentals of statistical signal processing (Vol. I: Estimation Theory). London: Pearson Education.

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of Anhui Province (1508085QF125), the startup research foundation of Anhui University (01001770-10117700011), the college natural science research project of Anhui Province (KJ2016A042), the Open Project of Key Laboratory of Intelligent Computing and Signal Processing, the Ph.D. Programs Foundation of Ministry of Education of China (20123401110004), the quality engineering project of Anhui Province (2013zjjh003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhi.

Appendices

Appendix A

Proof of Theorem 1

First, we present Lemma 1 which will be used in the proof of Theorems 1 and 2.

Lemma 1

If vectors \(\text{b} \in {\mathbb{C}}^{M \times 1}\),\(\text{c} \in {\mathbb{C}}^{M \times 1}\) , and \(\text{b} \sim \mathcal{C}\mathcal{N}\left( {0,\sigma_{b}^{2} {\mathbf{I}}_{M} } \right)\), \(\text{c} \sim \mathcal{C}\mathcal{N}\left( {0,\sigma_{c}^{2} {\mathbf{I}}_{M} } \right)\), \(\text{b}\) and \(\text{c}\) are independent, thus \(\frac{{\text{b}^{H} }}{{\| \text{b} \|}}\text{c} \sim \mathcal{C}\mathcal{N}\left( {0,\sigma_{c}^{2} } \right)\).

Proof

Let \(d = \frac{{\text{b}^{H} }}{{\left\| \text{b} \right\|}}\text{c}\). we can see that \(d \in {\mathbb{C}}^{1 \times 1}\), d is the weighted sum of i.i.d. complex Gaussian random variables with distribution of \(\mathcal{C}\mathcal{N}\left( {0,\sigma_{c}^{2} } \right)\), and the powers of the weighted sum up to 1, so d is also a complex Gaussian random variable. Due to the independence between \(\text{b}\) and \(\text{c}\), \({\mathbb{E}}\left\{ {\frac{{\text{b}^{H} }}{{\left\| \text{b} \right\|}}\text{c}} \right\} = 0\) and \(\text{var} \left\{ {\frac{{\text{b}^{H} }}{{\left\| \text{b} \right\|}}\text{c}} \right\} = {\mathbb{E}}\left\{ {\left| {\frac{{\text{b}^{H} }}{{\left\| \text{b} \right\|}}\text{c}} \right|^{2} } \right\} = {\mathbb{E}}\left\{ {\text{c}^{H} \frac{\text{b}}{{\left\| \text{b} \right\|}} \cdot \frac{{\text{b}^{H} }}{{\left\| \text{b} \right\|}}\text{c}} \right\} = \sigma_{c}^{2}\), the end of the proof of Lemma 1.

Here we begin the proof Theorem 1:

From expression (11), we can write the achievable rate lower bound of user k in cell i as

$$R_{ik,dl}^{mrc} = \log_{2} \left( {1 + \frac{{\left| {{\mathbb{E}}\{ \sqrt p h_{iik}^{T} w_{ik} s_{ik} \} } \right|^{2} }}{{{\mathbb{E}}\{ \left| {I_{ik}^{mrc} } \right|^{2} \} }}} \right)$$
(18)

where \(I_{ik}^{mrc}\) is given in expression (13), substitute \(w_{ik} = \frac{{\hat{h}_{iik}^{*} }}{{\left\| {\hat{h}_{iik} } \right\|}}\) into (13) and we can rewritten \(I_{ik}^{mrc}\) into five mutually independent items added together.

$$I_{ik}^{mrc} { = }\sum\limits_{n = 1}^{5} {I_{ik,n}^{mrc} }$$
(19)

where \(I_{ik,1}^{mrc} { = }\sqrt p \left( {\frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} - {\mathbb{E}}\left\{ {\frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} } \right\}} \right)s_{ik}\), \(I_{ik,2}^{mrc} { = }\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{\hat{h}_{iij}^{H} }}{{\left\| {\hat{h}_{iij} } \right\|}}h_{iik} s_{ij} }\),\(I_{ik,3}^{mrc} { = }\sum\limits_{l = 1,l \ne i}^{L} {\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{\hat{h}_{llj}^{H} }}{{\left\| {\hat{h}_{llj} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lj} } }\), \(I_{ik,4}^{mrc} { = }\sum\limits_{l = 1,l \ne i}^{L} {\sqrt p \frac{{\hat{h}_{llk}^{H} }}{{\left\| {\hat{h}_{llk} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lk} }\), \(I_{ik,5}^{mrc} = n_{ik}.\)

Thus the signal term is

$${\mathbb{E}}\{ \sqrt p h_{iik}^{T} w_{ik} s_{ik} \} = {\mathbb{E}}\ \left\{ \sqrt p \frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} s_{ik} \right\} = {\mathbb{E}}\left\{ \sqrt p \frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}(\hat{h}_{iik} + \varepsilon_{iik} )s_{ik} \right\} = \sqrt p E_{M} \sqrt {\sigma_{{\hat{h}_{iik} }}^{2} }$$
(20)

Because \(\frac{{\left\| {\hat{h}_{iik} } \right\|^{2} }}{{\sigma_{{\hat{h}_{iik} }}^{2} }}\) is the Chi square distribution with freedom degree 2M, thus \(\frac{{\left\| {\hat{h}_{iik} } \right\|}}{{\sqrt {\sigma_{{\hat{h}_{iik} }}^{2} } }}\) is the chi distribution with freedom degree 2M, so \({\mathbb{E}}\left\{ {\left\| {\hat{h}_{iik} } \right\|} \right\} = \frac{{\varGamma (M + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})}}{\varGamma (M)}\sqrt {\sigma_{{\hat{h}_{iik} }}^{2} } = E_{M} \sqrt {\sigma_{{\hat{h}_{iik} }}^{2} }\). \(\text{var} \left\{ {\left\| {\hat{h}_{iik} } \right\|} \right\} = (M - E_{M}^{2} )\sigma_{{\hat{h}_{iik} }}^{2} = Q_{M} \sigma_{{\hat{h}_{iik} }}^{2}\). In the last equation in (20), we have used the property of chi distribution and the independence between \(\hat{h}_{iik}\) and \(\varepsilon_{iik}\).

Due to the mutual independence between the interference and noise terms in expression (19), we can get

$${\mathbb{E}}\left\{ {\left| {I_{ik}^{mrc} } \right|^{2} } \right\}{ = }\sum\limits_{n = 1}^{5} {{\mathbb{E}}\left\{ {\left| {I_{ik,n}^{mrc} } \right|^{2} } \right\}}$$
(21)

Here we analyze each of the terms in (21), the first term is

$${\mathbb{E}}\left\{ {\left| {I_{ik,1}^{mrc} } \right|^{2} } \right\}{ = }{\mathbb{E}}\left\{ {\left| {\sqrt p \left( {\frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} - {\mathbb{E}}\left\{ {\frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} } \right\}} \right)s_{ik} } \right|^{2} } \right\}{ =}\,p\text{var} \left\{ {\frac{{\hat{h}_{iik}^{H} }}{{\left\| {\hat{h}_{iik} } \right\|}}h_{iik} } \right\} = p(Q_{M} \sigma_{{\hat{h}_{iik} }}^{2} + \sigma_{{\varepsilon_{iik} }}^{2} )$$
(22)

In the last equation in (22), we have used \(h_{iik} = \hat{h}_{iik} + \varepsilon_{iik}\), the independence between \(\hat{h}_{iik}\) and \(\varepsilon_{iik}\), and the Lemma 1. For \(I_{ik,2}^{mrc}\), due to the independence between \(\hat{h}_{iij}\) and \(h_{iik}\)(\(j \ne k\)), according to Lemma 1, we can get \(\frac{{\hat{h}_{iij}^{H} }}{{\left\| {\hat{h}_{iij} } \right\|}}h_{iik} \sim \mathcal{C}\mathcal{N}\left( {0,\beta_{iik} } \right)\) for all \(j \ne k\). Thus

$${\mathbb{E}}\left\{ {\left| {I_{ik,2}^{mrc} } \right|^{2} } \right\}{ = }{\mathbb{E}}\left\{ {\left| {\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{\hat{h}_{iij}^{H} }}{{\left\| {\hat{h}_{iij} } \right\|}}h_{iik} s_{ij} } } \right|^{2} } \right\} = p(K - 1)\beta_{iik}$$
(23)

For \(I_{ik,3}^{mrc}\), we found that \({\mathbb{E}}\left\{ {\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)^{H} \left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)} \right\}\) \(= {\mathbb{E}}\left\{ {h_{lik}^{H} h_{lik} - h_{lik}^{H} \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} - h_{iik}^{H} \frac{{diag\{ \hat{h}^{*}_{lik} \} }}{{diag\{ \hat{h}^{*}_{iik} \} }}h_{lik} + h_{iik}^{H} \frac{{diag\{ \hat{h}^{*}_{lik} \} }}{{diag\{ \hat{h}^{*}_{iik} \} }}\frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right\} = \beta_{lik} - \sigma_{{\hat{h}_{lik} }}^{2} - \sigma_{{\hat{h}_{lik} }}^{2} + \sigma_{{\hat{h}_{lik} }}^{2} = \sigma_{{\varepsilon_{lik} }}^{2}\). The second last equation is obtained by polynomial expansion. So

$${\mathbb{E}}\left\{ {\left| {I_{ik,3}^{mrc} } \right|^{2} } \right\} = {\mathbb{E}}\left\{ {\left| {\sum\limits_{l = 1,l \ne i}^{L} {\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{\hat{h}_{llj}^{H} }}{{\left\| {\hat{h}_{llj} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lj} } } } \right|^{2} } \right\} = \sum\limits_{l = 1,l \ne i}^{L} {p(K - 1)} \sigma_{{\varepsilon_{lik} }}^{2}$$
(24)

Using the similar method as \(I_{ik,3}^{mrc}\) and due to the independence between \(\hat{h}_{llk}\) and \(\varepsilon_{lik}\), we can obtain

$${\mathbb{E}}\left\{ {\left| {I_{ik,4}^{mrc} } \right|^{2} } \right\}\,{=}\,{\mathbb{E}}\left\{ {\left| {\sum\limits_{l = 1,l \ne i}^{L} {\sqrt p \frac{{\hat{h}_{llk}^{H} }}{{\left\| {\hat{h}_{llk} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lk} } } \right|^{2} } \right\} = \sum\limits_{l = 1,l \ne i}^{L} p \sigma_{{\varepsilon_{lik} }}^{2}$$
(25)

In addition,

$${\mathbb{E}}\left\{ {\left| {I_{ik,5}^{mrc} } \right|^{2} } \right\}{ = }{\mathbb{E}}\left\{ {\left| {n_{ik} } \right|^{2} } \right\} = 1$$
(26)

Combining expressions (20)–(26), we can get Theorem 1.

Appendix B

Proof of Theorem 2

Using the similar analysis method as in theorem 1, we can write achievable rate lower bound of user k in cell i for ZF-BSC is

$$R_{ik,dl}^{zf} = \log_{2} \left( {1 + \frac{{\left| {{\mathbb{E}}\{ \sqrt p h_{iik}^{T} w_{ik} s_{ik} \} } \right|^{2} }}{{{\mathbb{E}}\{ \left| {I_{ik}^{zf} } \right|^{2} \} }}} \right)$$
(27)

where \(w_{ik} = \frac{{a_{ik}^{*} }}{{\left\| {a_{ik} } \right\|}}\), \(a_{ik}\) is the kth column of matrix \({\mathbf{A}}_{i}\), and \({\mathbf{A}}_{i} = {\hat{\mathbf{H}}}_{ii} ({\hat{\mathbf{H}}}_{ii}^{H} {\hat{\mathbf{H}}}_{ii} )^{ - 1}\). \(I_{ik}^{zf} { = }\sum\limits_{n = 1}^{5} {I_{ik,n}^{zf} }\),\({\mathbb{E}}\left\{ {\left| {I_{ik}^{zf} } \right|^{2} } \right\}{ = }\sum\limits_{n = 1}^{5} {{\mathbb{E}}\left\{ {\left| {I_{ik,n}^{zf} } \right|^{2} } \right\}}\).

The signal term is

$${\mathbb{E}}\left\{ \sqrt p h_{iik}^{T} w_{ik} s_{ik} \right\} = {\mathbb{E}}\left\{ \sqrt p \frac{{a_{ik}^{H} }}{{\left\| {a_{ik} } \right\|}}h_{iik} s_{ik} \right\} = {\mathbb{E}}\left\{ \sqrt p \frac{{a_{ik}^{H} }}{{\left\| {a_{ik} } \right\|}}(\hat{h}_{iik} + \varepsilon_{iik} )s_{ik} \right\} = \sqrt p {{\mathbb{E}}}\left\{ \frac{1}{{\left\| {a_{ik} } \right\|}}\right\} = \sqrt p E_{M - K + 1} \sqrt {\sigma_{{\hat{h}_{iik} }}^{2} }$$
(28)

We have used the \(a_{ik}^{H} \hat{h}_{iij} = \delta_{jk}\) (the property of ZF precoding) in expression (28). The interference and noise terms are (29)–(33),

$${\mathbb{E}}\left\{ {\left| {I_{ik,1}^{zf} } \right|^{2} } \right\} = {\mathbb{E}}\left\{ {\left| {\sqrt p \left( {\frac{{a_{ik}^{H} }}{{\left\| {a_{ik} } \right\|}}h_{iik} - {\mathbb{E}}\left\{ {\frac{{a_{ik}^{H} }}{{\left\| {a_{ik} } \right\|}}h_{iik} } \right\}} \right)s_{ik} } \right|^{2} } \right\} = p\text{var} \left\{ {\frac{{a_{ik}^{H} }}{{\left\| {a_{ik} } \right\|}}h_{iik} } \right\} = p\left( {\text{var} \left\{ {\frac{1}{{\left\| {a_{ik} } \right\|}}} \right\} + \sigma_{{\varepsilon_{iik} }}^{2} } \right) = p(Q_{M - K + 1} \sigma_{{\hat{h}_{iik} }}^{2} + \sigma_{{\varepsilon_{iik} }}^{2} )$$
(29)

According to the previous analysis, \(a_{ik}\) is the kth column of matrix \({\mathbf{A}}_{i}\), and \({\mathbf{A}}_{i} = {\hat{\mathbf{H}}}_{ii} ({\hat{\mathbf{H}}}_{ii}^{H} {\hat{\mathbf{H}}}_{ii} )^{ - 1}\), \(\hat{h}_{iik}\) is the kth column of \({\hat{\mathbf{H}}}_{ii}\), \(\hat{h}_{iik} \sim \mathcal{C}\mathcal{N}\left( {0,\sigma_{{\hat{h}_{iik} }}^{2} {\mathbf{I}}_{M} } \right)\). Using the results of lemma 4 in paper [17], we can get \({\mathbb{E}}\left\{ {\frac{1}{{\left\| {a_{ik} } \right\|}}} \right\} = E_{M + K - 1} \sqrt {\sigma_{{\hat{h}_{iik} }}^{2} }\), \(\text{var} \left\{ {\frac{1}{{\left\| {a_{ik} } \right\|}}} \right\} = Q_{M + K - 1} \sigma_{{\hat{h}_{iik} }}^{2}\), where \(E_{M - K + 1} = \frac{{\varGamma (M - K + 1 + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})}}{\varGamma (M - K + 1)}\), \(Q_{M - K + 1} = M - K + 1 - E_{M - K + 1}^{2}\).

Due to \(\frac{{a_{ij}^{H} }}{{\left\| {a_{ij} } \right\|}}h_{iik} = \frac{{a_{ij}^{H} }}{{\left\| {a_{ij} } \right\|}}(\hat{h}_{iik} + \varepsilon_{iik} ) = \frac{{a_{ij}^{H} }}{{\left\| {a_{ij} } \right\|}}\varepsilon_{iik} \sim \mathcal{C}\mathcal{N}\left( {0,\sigma_{{\varepsilon_{iik} }}^{2} } \right)\) for \(j \ne k\), thus

$${\mathbb{E}}\left\{ {\left| {I_{ik,2}^{zf} } \right|^{2} } \right\} = {\mathbb{E}}\left\{ {\left| {\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{a_{ij}^{H} }}{{\left\| {a_{ij} } \right\|}}h_{iik} s_{ij} } } \right|^{2} } \right\} = p(K - 1)\sigma_{{\varepsilon_{iik} }}^{2}$$
(30)

Using the similar method as \(I_{ik,3}^{mrc}\), \(I_{ik,4}^{mrc}\) in Theorem 1 and due to the independence between \(a_{lk}\) and \(\varepsilon_{lik}\), we can obtain

$${\mathbb{E}}\left\{ {\left| {I_{ik,3}^{zf} } \right|^{2} } \right\}\,{=}\,{\mathbb{E}}\left\{ {\left| {\sum\limits_{l = 1,l \ne i}^{L} {\sum\limits_{j = 1,j \ne k}^{K} {\sqrt p \frac{{a_{lj}^{H} }}{{\left\| {a_{lj} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lj} } } } \right|^{2} } \right\} = \sum\limits_{l = 1,l \ne i}^{L} {p(K - 1)} \sigma_{{\varepsilon_{lik} }}^{2}$$
(31)
$${\mathbb{E}}\left\{ {\left| {I_{ik,4}^{zf} } \right|^{2} } \right\}\,=\,{\mathbb{E}}\left\{ {\left| {\sum\limits_{l = 1,l \ne i}^{L} {\sqrt p \frac{{a_{lk}^{H} }}{{\left\| {a_{lk} } \right\|}}\left( {h_{lik} - \frac{{diag\{ \hat{h}_{lik} \} }}{{diag\{ \hat{h}_{iik} \} }}h_{iik} } \right)s_{lk} } } \right|^{2} } \right\} = \sum\limits_{l = 1,l \ne i}^{L} p \sigma_{{\varepsilon_{lik} }}^{2}$$
(32)

In addition,

$${\mathbb{E}}\left\{ {\left| {I_{ik,5}^{zf} } \right|^{2} } \right\}{ = }{\mathbb{E}}\left\{ {\left| {n_{ik} } \right|^{2} } \right\} = 1$$
(33)

Combining expressions (27)–(33), we can obtain Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, H., Hu, Y. Novel Multi-cell Precoding Schemes for TDD Massive MIMO Systems. Wireless Pers Commun 97, 6111–6129 (2017). https://doi.org/10.1007/s11277-017-4829-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4829-4

Keywords

Navigation