Skip to main content
Log in

6LoWPAN Route-Over with End-to-End Fragmentation and Reassembly Using Cross-Layer Adaptive Backoff Exponent

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In 6LoWPAN, IPv6 packet’s fragments are forwarded using multi-hops route-over routing protocols. Although conventional route-over achieves high packet delivery ratio, it has high delay due to the hop-by-hop fragmentation and reassembly. Conversely, enhanced route-over reduces the delay through avoiding the hop-by-hop fragmentation and reassembly. However, it hurts back the packet delivery ratio especially when the number of packet’s fragments is high. This paper presents route-over with end-to-end fragmentation and reassembly using adaptive backoff exponent (ROE2E-ABE). In this protocol, MAC and adaptation cross-layer integration is exploited to adapt the backoff process based on number of fragments. Initially, the relationship between the backoff exponent and the number of fragments is derived. The number of fragments is calculated and embedded within the adaptation layer header. When the MAC layer receives the fragment from upper adaptation layer, it retrieves the number of fragments from the header, calculates the backoff parameters and performs the backoff process accordingly. The simulation shows that ROE2E-ABE outperforms both conventional and enhanced route-over routing protocols in terms of packet delivery ratio, average end-to-end delay, average throughput and average energy consumption. The simulation results are validated using testbed implementation. The ABE in ROE2E-ABE manages interferences and improves the route-over routing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Miorandi, D., Sicari, S., Pellegrini, F. D., & Chlamtac, I. (2012). Internet of things: vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. doi:10.1016/j.adhoc.2012.02.016.

    Article  Google Scholar 

  2. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010.

    Article  MATH  Google Scholar 

  3. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15. 4 networks. Internet standard RFC: 4944. doi: http://dx.doi.org/10.17487/RFC4944.

  4. Kushalnagar, N., Montenegro, G., Schumacher, C. (2007). IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. RFC 4919: Informational, Network Working Group.

  5. Gomez, C., Kim, E., Kaspar, D., Bormann, C. (2012). Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. RFC 6606: Informational, Internet Engineering Task Force.

  6. Hui, J. W., & Culler, D. E. (2008). Extending IP to low-power, wireless personal area networks. IEEE Internet Computing, 12(4), 37–45. doi:10.1109/MIC.2008.79.

    Article  Google Scholar 

  7. Mulligan, G. (2007). The 6LoWPAN architecture. In Proceedings of the 4th workshop on Embedded networked sensors (EmNets2007), Cork, Ireland (pp. 78–82). doi: 10.1145/1278972.1278992.

  8. Chowdhury, A. H., Ikram, M, Cha, H. S., Redwan, H., Shams, S. M., Kim, K. H., et al. (2009). Route-over vs mesh-under routing in 6LoWPAN. In Proceedings of the 2009 international conference on wireless communications and mobile computing (IWCMC ‘09): Connecting the world wirelessly (pp. 1208–1212). New York, NY: ACM. doi:10.1145/1582379.1582643.

  9. Calveras Augé, A. M., & Ludovici, A. (2010). Implementation and evaluation of Multi-hop routing in 6LoWPAN. IX Jornadas de Ingeniería Telemática (JITEL 2010) (pp. 1–6). Spain: Universidad de Valladolid.

    Google Scholar 

  10. Ludovici, A., Calveras, A., & Casademont, J. (2011). Forwarding techniques for IP fragmented packets in a real 6LoWPAN network. Sensors, 11(1), 992–1008. doi:10.3390/s110100992.

    Article  Google Scholar 

  11. Thubert, P., Hui, J. W. (2013). LLN fragment forwarding and recovery. IETF: Internet-Draft. http://tools.ietf.org/html/draft-thubert-roll-forwarding-frags-01. Accessed 11 January 2013.

  12. Zhu, Y. H., Chen, G., Chi, K., Li, Y. (2013). The chained mesh-under routing (C-MUR) for improving ipv6 packet arrival rate over wireless sensor networks. In Advances in Wireless Sensor Networks (Vol. 334, pp. 734–743). Berlin Heidelberg: Springer.

  13. Weigel, A., Ringwelski, M., Turau, V., Timm-Giel, A. (2013). Route-over forwarding techniques in a 6LoWPAN. In Mobile networks and management (Vol. 125, pp. 122–135). Berlin: Springer.

  14. Bhunia, S. S., Sikder, D. K., Roy, S., Mukherjee, N. A. (2012). Comparative study on routing schemes of IP based wireless sensor network. In Proceeding of 2102 ninth international conference on wireless and optical communications networks (WOCN), Indore, India (pp. 1–5). doi:10.1109/WOCN.2012.6331898.

  15. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P. (2009). Collection tree protocol. In Proceedings of the 7th ACM conference on embedded networked sensor systems (SenSys ‘09) (pp. 1–14). New York, NY: ACM. doi:10.1145/1644038.1644040.

  16. Amazon Web Services (2014). Error retries and exponential backoff in AWS. http://docs.aws.amazon.com/general/latest/gr/api-retries.html. Accessed 11 September 2014.

  17. Google Drive Web APIs (2014). Handling API Errors. https://developers.google.com/drive/web/handle-errors. Accessed 11 September 2014.

  18. Kleinrock, L., Lam, S. S. (1973). Packet-switching in a slotted satellite channel. In Proceedings of the June 48, 1973, national computer conference and exposition (pp. 703–710). New York, NY: ACM. doi:10.1145/1499586.1499752.

  19. Lam, S. S. (2007). Adaptive Backoff algorithms for multiple access: a history. http://www.cs.utexas.edu/users/lam/NRL/backoff.html. Accessed 11 September 2014.

  20. Metealfe, R. M. (1974). Distributed algorithms for a broadcast queue. http://dabq.wordpress.com.Accessed 11 September 2014.

  21. Metcalfe, B. (1976). Steady-state analysis of a slotted and controlled ALOHA system with blocking. ACM SIGCOMM Computer Communication Review, 5(1), 24–31. doi:10.1145/1024847.1024849.

    Article  Google Scholar 

  22. Metcalfe, R. M., & Boggs, D. R. (1976). Ethernet: distributed packet switching for local computer networks. Communications of the ACM, 19(7), 395–404. doi:10.1145/360248.360253.

    Article  Google Scholar 

  23. IEEE Computer Society (1991). 1802.3-1991, IEEE standard for local and metropolitan area networks: conformance test methodology for IEEE standards for local and metropolitan area networks: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications. doi:10.1109/IEEESTD.1991.101033.

  24. IEEE Computer Society (1997). 802.11-1997, IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications. doi: 10.1109/IEEESTD.1997.85951.

  25. Rao, V. P., Marandin, D. (2006). Adaptive backoff exponent algorithm for Zigbee (IEEE 802.15. 4). In Next generation teletraffic and wired/wireless advanced networking (pp. 501–516). Berlin, Heidelberg: Springer.

  26. Rohm, D., Goyal, M. (2009). Dynamic backoff for IEEE 802.15. 4 Beaconless Networks. IEEE Mini-Grants (National Science Foundation under Grant No. 0442313), University of Wisconsin Milwaukee, Milwaukee, WI, 53201.

  27. Kwak, B. J., Song, N. O., & Miller, L. E. (2005). Performance analysis of exponential backoff. IEEE ACM Transactions on Network, 13(2), 343–355.

    Article  Google Scholar 

  28. The Qualnet simulator www.scalable-networks.com.

Download references

Acknowledgements

This research was supported by the Wireless and Photonic Networks Research Center of Excellence (WiPNET), Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia. Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Samer A. B. Awwad and Nurul Halimatul Asmak Ismail wrote the manuscript. Fazirulhisyam Hashim corrected the mathematical derivations. Nor K. Noordin and Borhanuddin Mohd Ali revised the manuscript. Samer A. B. Awwad performed the experiments.

Corresponding author

Correspondence to Samer A. B. Awwad.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awwad, S.A.B., Noordin, N.K., Ali, B.M. et al. 6LoWPAN Route-Over with End-to-End Fragmentation and Reassembly Using Cross-Layer Adaptive Backoff Exponent. Wireless Pers Commun 98, 1029–1053 (2018). https://doi.org/10.1007/s11277-017-4907-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4907-7

Keywords

Navigation