Skip to main content
Log in

Robust Iris Recognition Using Moment Invariants

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Iris recognition under less constrained environment poses a challenge to be considered for high-security applications. In this paper, discrete orthogonal moment-based features including Tchebichef, Krawtchouk and Dual-Hahn are proposed which prove to be effective for both near-infrared and visible images. The local as well as global features are extracted from localized iris regions till 15th order with invariance (scale, rotation, translation and illumination) properties and tolerance to noise. The performance of the moment-based features is evaluated on four publicly available databases: CASIA-IrisV4-Interval, IITD.v1, UPOL and UBIRIS.v2. It is found that the proposed method gives encouraging results in terms of accuracy, equal error rate and decidability index as compared to the competing techniques available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. UID Authority of India. (2012). Role of biometric technology in Aadhaar enrollments. [Online]. http://uidai.gov.in/images/FrontPageUpdates/role_of_biometric_technology_in_aadhaar_jan21_2012.pdf.

  2. Tan, C. W., & Kumar, A. (2013). Adaptive and localized iris weight map for accurate iris recognition under less constrained environments. In Proceedings of IEEE 6th International Conference on Biometrics, Theory Applications and Systems (BTAS) (pp. 1–7).

  3. Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(1), 1148–1161.

    Article  Google Scholar 

  4. Wildes, R. (1997). Iris recognition: An emerging biometric technology. Proceedings of IEEE, 85(9), 1348–1363.

    Article  Google Scholar 

  5. Masek, L. (2003). Recognition of human iris patterns for biometric identification (pp. 1–7), http://www.csse.uwa.edu.au/opk/studentprojects/labor. Accessed 26 Nov 2016.

  6. Boles, W., & Boashash, B. (1998). A human identification technique using images of the Iris and wavelet transform. IEEE Transactions on Signal Processing, 46(4), 1185–1188.

    Article  Google Scholar 

  7. Monro, D. M., Rakshit, S., & Zhang, D. (2007). DCT based iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 586–595.

    Article  Google Scholar 

  8. Ma, L., Tan, T., Wang, Y., & Zhang, D. (2004). Efficient iris recognition by characterizing key local variations. IEEE Transactions on Image Processing, 13(6), 739–750.

    Article  Google Scholar 

  9. Ma, L., Tan, T., Wang, Y., & Zhang, D. (2004). Local intensity variation analysis for iris recognition. Pattern Recognition, 37(6), 1287–1298.

    Article  Google Scholar 

  10. Kumar, A., & Passi, A. (2010). Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognition, 43(3), 1016–1026.

    Article  MATH  Google Scholar 

  11. Rai, H., & Yadav, A. (2014). Iris recognition using combined support vector machine and Hamming distance approach. Expert Systems with Applications, 41(2), 588–593.

    Article  Google Scholar 

  12. Liu, Y., He, F., Zhu, X., Liu, Z., Chen, Y., Han, Y., et al. (2015). The improved characteristics of bionic gabor representations by combining with sift key-points for iris recognition. Journal of Bionic Engineering, 12(3), 504–517.

    Article  Google Scholar 

  13. Bhateja, A. K., Sharma, S., Chaudhury, S., & Agrawal, N. (2016). Iris recognition based on sparse representation and k-nearest subspace with genetic algorithm. Pattern Recognition Letters, 73, 13–18.

    Article  Google Scholar 

  14. Umer, S., Dhara, B. C., & Chanda, B. (2015). Iris recognition using multiscale morphologic features. Pattern Recognition Letters, 65, 67–74.

    Article  Google Scholar 

  15. Raffei, A. F. M., Asmuni, H., Hassan, R., & Othman, R. M. (2013). Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local Radon transform. Pattern Recognition, 46(10), 2622–2633.

    Article  Google Scholar 

  16. Sibai, F. N., Hosani, H. I., Naqbi, R. M., Dhanhani, S., & Shehhi, S. (2011). Iris recognition using artificial neural networks. Expert Systems with Applications, 38(5), 5940–5946.

    Article  Google Scholar 

  17. Tan, C. W., & Kumar, A. (2012). Unified framework for automated iris segmentation using distantly acquired face images. IEEE Transactions on Image Processing, 21(9), 4068–4079.

    Article  MathSciNet  MATH  Google Scholar 

  18. Proenca, H. (2010). Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1502–1516.

    Article  Google Scholar 

  19. Sankowski, W., Grabowski, K., Napieralska, M., Zubert, M., & Napieralski, A. (2010). Reliable algorithm for iris segmentation in eye image. Image and Vision Computing, 28(2), 231–237.

    Article  Google Scholar 

  20. Tan, C. W., & Kumar, A. (2014). Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE Transactions on Image Processing, 23(9), 3962–3974.

    Article  MathSciNet  MATH  Google Scholar 

  21. Alvarez-Betancourt, Y., & Garcia-Silvente, M. (2016). A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Knowledge-Based Systems, 92, 169–182.

    Article  Google Scholar 

  22. Bowyer, K. W. (2012). The results of the NICE. II iris biometrics competition. Pattern Recognition Letters, 33(8), 965–969.

    Article  Google Scholar 

  23. Proenca, H., & Alexandre, L. A. (2012). Toward covert iris biometric recognition: Experimental results from the NICE contests. IEEE Transactions on Information Forensics and Security, 7(2), 798–808.

    Article  Google Scholar 

  24. CASIA Iris Image Database, http://biometrics.idealtest.org/.

  25. Dobes, M., & Machala, L. (2007). Iris database, Palacky University in Olomouc, Czech Republic, http://www.inf.upol.cz/iris.

  26. Proenca, H., Filipe, S., Santos, R., Oliveira, J., & Alexandre, L. A. (2010). The UBIRIS.v2: A database of visible wavelength iris images captured on the move and at-a-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1529–1535.

    Article  Google Scholar 

  27. Yap, P. T., Raveendran, P., & Ong, S. H. (2003). Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing, 12(11), 1367–1377.

    Article  MathSciNet  Google Scholar 

  28. Rahman, S. M., Howlader, T., & Hatzinakos, D. (2016). On the selection of 2D Krawtchouk moments for face recognition. Pattern Recognition, 54, 83–93.

    Article  Google Scholar 

  29. Priyal, S. P., & Bora, P. K. (2013). A robust static hand gesture recognition system using geometry based normalizations and Krawtchouk moments. Pattern Recognition Letters, 46(8), 2202–2219.

    Article  MATH  Google Scholar 

  30. Kaur, B., Joshi, G., & Vig, R. (2015). Analysis of shape recognition capability of Krawtchouk moments. In IEEE international conference on computing, communication & automation (ICCCA) (pp. 1085–1090).

  31. Kaur, B., & Joshi, G. (2016). Lower order Krawtchouk moment-based feature-set for hand gesture recognition. Advances in Human-Computer Interaction, 2016(2016), 1–10.

    Article  Google Scholar 

  32. Kaur, B., Joshi, G., & Vig, R. (2017). Indian sign language recognition using Krawtchouk moment-based local features. The Imaging Science Journal, 65(3), 171–179.

    Article  Google Scholar 

  33. Kaur, B., Joshi, G., & Vig, R. (2017). Identification of ISL alphabets using discrete orthogonal moments. Wireless Personal Communications, 95, 1–23.

    Article  Google Scholar 

  34. Tsougenis, E. D., Papakostas, G. A., Koulouriotis, D. E., & Tourassis, V. D. (2012). Performance evaluation of moment-based watermarking methods: A review. Journal of Systems and Software, 85(8), 1864–1884.

    Article  Google Scholar 

  35. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.

    Article  MATH  Google Scholar 

  36. Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of Optic Society of America, 70(8), 920–930.

    Article  MathSciNet  Google Scholar 

  37. Mukundan, R., & Lee, P. A. (2001). Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 10(9), 1357–1364.

    Article  MathSciNet  MATH  Google Scholar 

  38. Yap, P. T., Raveendran, P., & Ong, S. H. (2007). Image analysis using Hahn moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2057–2062.

    Article  Google Scholar 

  39. Roy, K., & Bhattacharya, P. (2007). Iris recognition based on zigzag collarette region and asymmetrical support vector machines. International Conference Image Analysis and Recognition, 32, 854–865.

    Article  Google Scholar 

  40. Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 21–30.

    Article  Google Scholar 

  41. Erbilek, M., & Toygar, O. (2009). Recognizing partially occluded irises using subpattern based approaches. In Proceedings of the IEEE International Symposium on Computer And Information Sciences (pp. 606–610).

  42. Chen, C., & Chu, C. (2009). High performance iris recognition based on 1-D circular feature extraction and PSO–PNN classifier. Expert Systems with Applications, 36(7), 10351–10356.

    Article  Google Scholar 

  43. Patil, C. M., & Patilkulkarani, S. (2009). An approach of iris feature extraction for personal identification. In International conference on advances in recent technologies in communication and computing (pp. 796–799).

  44. Rahulkar, A. D., & Holambe, R. S. (2012). Half iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n: A postclassifier. The IEEE Transactions on Information Forensics and Security, 7(1), 230–240.

    Article  Google Scholar 

  45. Elgamal, M., & Al-Biqami, N. (2013). An efficient feature extraction method for iris recognition based on wavelet transformation. International Journal of Information Technology, 2(3), 521–527.

    Google Scholar 

  46. Ahamed, A., & Bhuiyan, M. I. H. (2012). Low complexity iris recognition using curvelet transform. In IEEE proceedings of the international conference on informatics, electronics & vision (pp. 548–553).

  47. Demirel, H., & Anbarjafari, G. (2008). Iris recognition system using combined histogram statistics. In Proceedings of the IEEE international symposium on computer and information sciences (pp. 1–4).

  48. Ross, A., & Sunder, M. S. (2010). Block based texture analysis for iris classification and matching. In IEEE proceedings of the workshops on computer vision and pattern recognition (pp. 30–37).

  49. Harjoko, A., Hartati, S., & Dwiyasa, H. (2009). A method for iris recognition based on 1d coiflet wavelet. World Academy of Science, Engineering and Technology, 56(24), 126–129.

    Google Scholar 

  50. Masood, K., Javed, D., & Basit, A. (2007). Iris recognition using wavelet. In IEEE proceedings of the international conference on emerging technologies (pp. 253–256).

  51. Tsai, C. C., Lin, H. Y., Taur, J., & Tao, C. W. (2012). Iris recognition using possibilistic fuzzy matching on local features. IEEE Transactions on Systems, Man, and Cybernetics, 42(1), 150–162.

    Article  Google Scholar 

  52. Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9), 1877–1893.

    Article  Google Scholar 

  53. Wenbo, D., Zhenan, S., & Tieniu, T. (2011). Iris matching based on personalized weight map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9), 1744–1757.

    Article  Google Scholar 

  54. Hollingsworth, K. P., Bowyer, K. W., & Flynn, P. J. (2009). The best bits in an iris code. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 964–973.

    Article  Google Scholar 

  55. Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., & Nakajima, H. (2008). An effective approach for iris recognition using phase-based image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1741–1756.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Chinese Academy of Sciences-Institute of Automation (CASIA), China, Indian Institute of Technology, Delhi (IITD), University of Palack´eho and Olomouc and Soft Computing and Image Analysis Group (SOCIA Lab.), Department of Computer Science, University of Beira Interior, Covilhã, Portugal for providing iris databases used in this work. The authors are also grateful to anonymous reviewers for their constructive comments which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bineet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Singh, S. & Kumar, J. Robust Iris Recognition Using Moment Invariants. Wireless Pers Commun 99, 799–828 (2018). https://doi.org/10.1007/s11277-017-5153-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5153-8

Keywords

Navigation