Skip to main content
Log in

Small Data: Effective Data Based on Big Communication Research in Social Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Big data research is difficult because of its complex structure, vast data storage, and unpredictable change. Social network communication involves a significant amount of incomputable data created by wireless devices across the world. Such data can be used to analyze human activities, seek certain patterns using communication data, and predict emergencies. However, most data are effect of human to research our activities. So, recording effective node distribution and investigating the topological structure in communication are particularly important in big data communication. This study establishes a big data communication simulation environment by searching small data and calculating the influence of small data nodes. The experiment shows that 1% of small data can connect 75% of communication nodes and 20% of small data can transmit 80% of data packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, X., Zhu, X., Wu, G. Q., et al. (2014). Data Mining with Big Data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.

    Article  Google Scholar 

  2. Wu, J., & Chen, Z. (2016). Reducing energy consumption and overhead based on mobile health in big data wireless networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-016-3610-4.

    Google Scholar 

  3. Wu, J., & Chen, Z. (2017). Human activity optimal cooperation objects selection routing scheme in opportunistic networks communication. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4001-1.

    Google Scholar 

  4. Maccartney, G. R., Rappaport, T. S., Samimi, M. K., et al. (2017). Millimeter-wave omnidirectional path loss data for small cell 5g channel modeling. IEEE Access, 3, 1573–1580.

    Article  Google Scholar 

  5. Oh, S. M., & Shin, J. S. (2017). An efficient small data transmission scheme in the 3GPP NB-IoT System. IEEE Communications Letters, 21(3), 660–663.

    Article  Google Scholar 

  6. Chen, H. M., Kazman, R., & Haziyev, S. (2016). Strategic prototyping for developing big data systems. IEEE Software, 33(2), 36–43.

    Article  Google Scholar 

  7. Hu G, Peng X, Yang Y, et al. Frankenstein: Learning deep face representations using small data. In IEEE transactions on image processing a publication of the IEEE signal processing society, 2016, PP(99):1–1.

  8. Aly, M., Hatch, A., Josifovski, V., et al. (2012). “Web-scale user modeling for targeting”,in Proc 21st international conference companion on World Wide Web (pp. 3–12). Lyon: ACM.

    Google Scholar 

  9. Jia, W. U., Chen, Z., & Zhao, M. (2017). Effective information transmission based on socialization nodes in opportunistic networks. Computer Networks, 1(24), 297–305. https://doi.org/10.1016/j.comnet.2017.10.005.

    Google Scholar 

  10. Estrin, D. (2014). Small data, where n = me. Communications of the ACM, 57(4), 32–34.

    Article  Google Scholar 

  11. Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information Communication & Society, 15(5), 1–18.

    Article  Google Scholar 

  12. Greenberg, A., Hamilton, J., Maltz, D. A., et al. (2009). The cost of a cloud: research problems in data center networks. Acm Sigcomm Computer Communication Review, 39(1), 68–73.

    Article  Google Scholar 

  13. Wu, J., & Chen, Z. (2016). Data decision and transmission based on mobile data health records on sensor devices in wireless networks. Wireless Personal Communications, 90, 2073. https://doi.org/10.1007/s11277-016-3438-y.

    Article  Google Scholar 

  14. Hellmann, T., & Staudigl, M. (2014). Evolution of social networks. European Journal of Operational Research, 234(3), 583–596.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ke XU, Zhang S, Hao C, et al. Measurement and analysis of online social networks. Chinese Journal of Computers, 2014:29–42.

  16. Magnusson, K. (2015). Resettled and connected? Social networks in the integration process of resettled refugees. Metabolomics Official Journal of the Metabolomic Society, 3(3), 211–221.

    MathSciNet  Google Scholar 

  17. Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788–8790.

    Article  Google Scholar 

  18. Newman, M. E. J. (2014). Analysis of weighted networks. Physical Review E., 70(5), 056131.

    Article  Google Scholar 

  19. Su, Z., Xu, Q., Zhu, H., et al. (2015). A novel design for content delivery over software defined mobile social networks. IEEE Network, 29(4), 62–67.

    Article  Google Scholar 

  20. Dunbar, R. I. M., Arnaboldi, V., Conti, M., et al. (2015). The structure of online social networks mirrors those in the offline world. Social Networks, 43, 39–47.

    Article  Google Scholar 

  21. Xiao, M., Wu, J., & Huang, L. (2015). Home-Based Zero-Knowledge Multi-Copy Routing in Mobile Social Networks. Parallel & Distributed Systems IEEE Transactions on, 26(5), 1238–1250.

    Article  Google Scholar 

  22. Zhang, L., Li, X. Y., Liu, K., et al. (2015). Message in a sealed bottle: Privacy preserving friending in mobile social networks. IEEE Transactions on Mobile Computing, 14(9), 1888–1902.

    Article  Google Scholar 

Download references

Acknowledgements

Foundation Items: This work was supported in part by Major Program of National Natural Science Foundation of China (71633006); The National Natural Science Foundation of China (61672540, 61379057); China Postdoctoral Science Foundation funded project (2017M612586); The Postdoctoral Science Foundation of Central South University (185684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhao, M. & Chen, Z. Small Data: Effective Data Based on Big Communication Research in Social Networks. Wireless Pers Commun 99, 1391–1404 (2018). https://doi.org/10.1007/s11277-017-5191-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5191-2

Keywords

Navigation