Skip to main content
Log in

Extremum Inference Algorithm: A Clever Optimization Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Most intelligent algorithms can’t predict the existence and possible position of new better solution. This deficiency not only leads to the waste of computing resources, it also affects the efficiency to find the optimal solution. To fix this problem, this paper proposes a new algorithm named extremum inference algorithm. During the iterations, this algorithm uses high efficient algorithms to simultaneously searches for both local maxima and local minima, and then uses a simple principle to infer the existences and possible positions of unknown extremums. By doing this, the extremum inference algorithm can decide if there possibly exists new extremums and search for new extremums in the most possible regions. A strong version of extremum inference algorithm can even provide an approach to estimate searching accuracy, which is a measurement that can help to determine if the global optimal has been found. Our examples demonstrate that the extremum inference algorithm can efficiently solve multimodal problems which are harder to solve than other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delice, Y., Kızılkaya Aydoğan, E., Özcan, U., et al. (2017). A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-014-0959-7.

    MATH  Google Scholar 

  2. Ding, S., Li, H., Su, C., et al. (2013). Evolutionary artificial neural networks: a review. Artificial Intelligence Review. https://doi.org/10.1007/s10462-011-9270-6.

    Google Scholar 

  3. Wei, L., Zhang, Z., Zhang, D., et al. (2018). A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2017.08.035.

    MathSciNet  MATH  Google Scholar 

  4. Karaboga, D., Gorkemli, B., Ozturk, C., et al. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review. https://doi.org/10.1007/s10462-012-9328-0.

    Google Scholar 

  5. Fister, I., Fister, I., Yang, X., et al. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2013.06.001.

    MATH  Google Scholar 

  6. Mirjalili, S., & Lewis, A. (2014). Adaptive gbest-guided gravitational search algorithm. Neural Computing and Applications. https://doi.org/10.1007/s00521-014-1640-y.

    Google Scholar 

  7. Yang, X. S., & He, X. (2013). Bat algorithm: literature review and applications. International Journal of Bio-Inspired Computation. https://doi.org/10.1504/IJBIC.2013.055093.

    Google Scholar 

  8. Liu, J., & Lampinen, J. (2005). A fuzzy adaptive differential evolution algorithm. Soft Computing. https://doi.org/10.1007/s00500-004-0363-x.

    MATH  Google Scholar 

  9. Yang, X., Cui, Z., Xiao, R., et al. (2013). Swarm intelligence and bio-inspired computation: Theory and applications. London: Elsevier Science & Technology Books.

    Book  Google Scholar 

  10. Yuan, K., Ling, Q., & Yin, W. (2016). On the convergence of decentralized gradient descent. SIAM Journal on Optimization. https://doi.org/10.1137/130943170.

    MathSciNet  MATH  Google Scholar 

  11. Klein, S., Pluim, J. P. W., Staring, M., et al. (2009). Adaptive stochastic gradient descent optimisation for image registration. International Journal of Computer Vision. https://doi.org/10.1007/s11263-008-0168-y.

    Google Scholar 

  12. Beck, A., & Tetruashvili, L. (2013). On the convergence of block coordinate descent type methods. SIAM Journal on Optimization. https://doi.org/10.1137/120887679.

    MathSciNet  MATH  Google Scholar 

  13. Dai, Y., & Kou, C. (2013). A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM Journal on Optimization. https://doi.org/10.1137/100813026.

    MathSciNet  MATH  Google Scholar 

  14. Qiao, Y., van Lew, B., Lelieveldt, B. P. F., et al. (2016). Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2015.2476354.

    Google Scholar 

  15. Roberge, V., Tarbouchi, M., & Labonte, G. (2013). Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2012.2198665.

    Google Scholar 

  16. Gülcü, Ş., & Kodaz, H. (2015). A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization. Engineering Applications of Artificial Intelligence. https://doi.org/10.1016/j.engappai.2015.06.013.

    Google Scholar 

  17. Czerniak, J. M., & Zarzycki, H. (2017). Artificial acari optimization as a new strategy for global optimization of multimodal functions. Journal of Computational Science. https://doi.org/10.1016/j.jocs.2017.05.028.

    Google Scholar 

  18. Birgin, E. G. (2001). A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization. https://doi.org/10.1007/s00245-001-0003-0.

    MathSciNet  MATH  Google Scholar 

  19. Yuan, G., Wei, Z., & Lu, X. (2017). Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Applied Mathematical Modelling. https://doi.org/10.1016/j.apm.2017.02.008.

    MathSciNet  Google Scholar 

  20. Valdez, F., Melin, P., & Castillo, O. (2014). Toolbox for bio-inspired optimization of mathematical functions. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.20523.

    Google Scholar 

  21. Singh, G. P., & Singh, A. (2014). Comparative study of Krill Herd, firefly and cuckoo search algorithms for unimodal and multimodal optimization. International Journal of Intelligent Systems and Applications. https://doi.org/10.5815/ijisa.2014.03.04.

    Google Scholar 

  22. Campana, E. F., Diez, M., Iemma, U., et al. (2016). Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. Optimization and Engineering. https://doi.org/10.1007/s11081-015-9303-0.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingdang Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Kang, X., Zhang, R. et al. Extremum Inference Algorithm: A Clever Optimization Algorithm. Wireless Pers Commun 102, 1617–1632 (2018). https://doi.org/10.1007/s11277-017-5219-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5219-7

Keywords

Navigation