Skip to main content

Advertisement

Log in

Energy Efficient Raptor Codes for Error Control in Wireless Body Area Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

WBAN consists of several tiny sensors that are located inside and outside human body for continuous monitoring of vital parameters of patients suffering from chronic diseases. The wearable sensor unit consists of transmitter, receiver and central process unit (gateway). The gateway is used to connect wearable sensors on human body to the internet. To increase the lifetime of such networks, the energy spent by the sensors has to be minimized. In this work we analyzed the feasibility and performance of fountain code based raptor code for error correction to overcome the energy and reliability issues. Versatility of raptor code in terms of code rate and coding gain is advantageous to increase the energy efficiency of WBAN network. Simulation results considering different fading channels show that the raptor coded packet transmission is more energy efficient than that of LT code, traditional BCH code and ARQ error control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  2. Lee, S., & Annavaram, M. (2012). Wireless body area networks: Where does energy go? In IISWC’12 IEEE international symposium on workload characterization, pp. 25–35.

  3. Abouei, J., Brown, J. D., Plataniotis, K. N., & Pasupathy, S. (2011). On the energy efficiency of LT codes in proactive wireless sensor networks. IEEE Transactions on Signal Processing, 59(3), 1116–1127.

    Article  MathSciNet  Google Scholar 

  4. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  Google Scholar 

  5. Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., & Spielman, D. A. (2001). Efficient erasure correcting codes. IEEE Transactions on Information Theory, 47(2), 569–584.

    Article  MathSciNet  Google Scholar 

  6. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels—A unified approach to performance analysis. New York: Wiley.

    Google Scholar 

  7. Gupta, A., & Abhayapala, T. D. (2008). Body area networks: Radio channel modelling and propagation characteristics. In CTW’08 communications theory workshop, Australia, pp. 58–63.

  8. Cheffena, M. (2014). Time-varying on-body wireless channel model during walking. EURASIP Journal on Wireless Communications and Networking, 1, 1–11.

    Google Scholar 

  9. Venkiah, A., Piantanida, P., Poullia, C., Duhamel, P., & Declercq, D. (2008). Rateless coding for quasi-static fading channels using channel estimation accuracy. In ISIT’08 IEEE international symposium on information theory, Toronto, Canada, pp. 2257–2261.

  10. Sivasubramanian, B., & Leib, H. (2008). Fixed-rate raptor codes over Rician fading channels. IEEE Transactions on Vehicular Technology, 57(6), 3905–3911.

    Article  Google Scholar 

  11. Abouei, J., Dehkordy, S. F., Plataniotis, K. N., & Pasupathy, S. (2011). Raptor codes in wireless body area networks. In PIMRC’11, IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC), pp. 2143–2147.

  12. Samouni, N., Jilbab, A., & Aboutajdine, D. (2017). Performance evaluation of LT codes for wireless body area network. Springer Book series on Advances in Intelligent Systems and Computing, 520, 311–320.

    Article  Google Scholar 

  13. Takabayashi, K., Tanaka, H., Sugimoto, C., & Kohno, R. (2014). Effective error control scheme with channel state information for WBAN. In ISMICT’ 2014: Proceedings of 8th international symposium on medical information and communication technology, pp. 1–5.

  14. Rappaport, T. S. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  15. Ma, Y. Y., Yuan, D. F., & Zhang, H. X. (2006). Fountain codes and applications to reliable wireless broadcast systems. In IEEE information theory workshop, Chengdu, China, pp. 66–70.

  16. Etesami, O., & Shokrollahi, A. (2006). Raptor codes on binary memoryless symmetric channels. IEEE Transactions on Information Theory, 52(5), 2033–2051.

    Article  MathSciNet  Google Scholar 

  17. Neugebauer, M., Ploennigs, J., & Kabitzsch, K. (2006). Evaluation of energy costs for single hop vs. multi hop with respect to topology parameters. In 2006 IEEE international workshop on factory communication systems, Torino, Italy, pp. 175–182.

  18. Pesovic, U. M., Mohorko, J. J., Benkic, K., & Čucej, Ž. F. (2010). Single-hop vs. multi-hop–Energy efficiency analysis in wireless sensor networks. In TELFOR: 18th telecommunications forum, Serbia.

  19. Vuran, M. C., & Akyildiz, I. F. (2006). Cross-layer analysis of error control in wireless sensor networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks, Reston, VA, pp. 585–594.

  20. Chouhan, S., Bose, R., & Balakrishnan, M. (2009). Integrated energy analysis of error correcting codes and modulation for energy efficient wireless sensor nodes. IEEE Transactions on Wireless Communication, 8(1), 5348–5355.

    Article  Google Scholar 

  21. Zhang, R., Gorce, J.-M., & Jaffrès-Runser, K. (2012). Energy-delay bounds analysis in wireless multi-hop networks with unreliable radio links. Journal of Adhoc Networks, 10(7), 1306–1321.

    Article  Google Scholar 

  22. Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9(9), 6869–6896.

    Article  Google Scholar 

  23. Atmel Corp. ATmega128 Datasheet. http://www.atmel.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kaythry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaythry, P., Kishore, R. & Praveena, V. Energy Efficient Raptor Codes for Error Control in Wireless Body Area Networks. Wireless Pers Commun 103, 1133–1151 (2018). https://doi.org/10.1007/s11277-018-5271-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5271-y

Keywords

Navigation