Skip to main content
Log in

A Threshold-Free LLR-Based Scheme to Minimize the BER for Decode-and-Forward Relaying

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In cooperative communications, the problem of error propagation has a detrimental effect on the diversity order of the wireless system. To mitigate such an effect, we present a relaying scheme that is based on the absolute value of the log-likelihood ratio (LLR) of the received message signals at both the relay node and the destination node. The calculated LLR values are then compared to each other and based on the result of the comparison, a decision is made on whether or not to activate the relay node. The proposed scheme does not rely on any threshold, and is thus simple in nature. A closed-form expression is derived for the bit-error-rate (BER) of the proposed scheme. The theoretical developments are validated by simulations. As a means for performance measurement, the proposed scheme is compared to its counterparts and is shown to provide a better BER performance at a much lower complexity. Furthermore, a closed-form expression of the outage probability is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. 3GPP TS 36.211V 8.2.0, Rel-8. (2008). Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation.

  2. 3GPP TR 36.814, Rel-9. (2010). Evolved universal terrestrial radio access (E-UTRA); further advancements for E-UTRA physical layer aspects.

  3. Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52, 36–43.

    Article  Google Scholar 

  4. Khuong, H. V., & Kong, H. Y. (2006). LLR-based decode-and-forward protocol for relay networks and closed-form BER expressions. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(6), 1832–1841.

    Article  Google Scholar 

  5. Kwon, T., Lim, S., Seo, W., & Hong, D. (2010). LLR-based symbol selective transmission with a near-optimal threshold to minimize BEP for demodulation-forward relay systems. IEEE Transactions on Wireless Communications, 9(2), 540–545.

    Article  Google Scholar 

  6. Onat, F. A., Fan, Y., Yanikomeroglu, H., & Thompson, J. S. (2008). Asymptotic BER analysis of threshold digital relaying schemes in cooperative wireless systems. In Proceedings of the IEEE wireless communications and networking conference (pp. 488–493).

  7. Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.

    Article  Google Scholar 

  8. Nguyen, S. L. H., Ghrayeb, A., Al-Habian, G., & Hasna, M. (2010). Mitigating error propagation in two-way relay channels with network coding. IEEE Transactions on Wireless Communications, 9(11), 3380–3390.

    Article  Google Scholar 

  9. Al-Habian, G., Ghrayeb, A., Hasna, M., & Abu-Dayya, A. (2011). Threshold-based relaying in coded cooperative networks. IEEE Transactions on Vehicular Technology, 60(1), 123–135.

    Article  Google Scholar 

  10. Su, W. (2007). Performance analysis for a suboptimum ML receiver in decode-and-forward communications. In Proceedings of the 2007 IEEE Globecom (pp. 2962–2966).

  11. Sharma, G. V. V., Ganwani, V., Desai, U. B., & Merchant, S. N. (2009). Performance analysis of maximum likelihood decode and forward cooperative systems in Rayleigh fading. In Proceedings of the 2009 IEEE International Conference on Communications (ICC) (pp. 1–5).

  12. Jain, A., Sharma, G. V. V., Desai, U. B., & Merchant, S. N. (2011). Exact analysis of the piecewise linear combiner for decode and forward cooperation with three relays. IEEE Transactions on Wireless Communications, 10(8), 2461–2467.

    Article  Google Scholar 

  13. Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications, 5(7), 1785–1794.

    Article  Google Scholar 

  14. Zeng, X. N., Ghrayeb, A., & Hasna, M. (2012). Joint optimal threshold-based relaying and ML detection in cooperative networks. IEEE Communications Letters, 16(6), 773–776.

    Article  Google Scholar 

  15. Stüber, G. I. (1996). Principles of mobile communications. Boston, MA: Kluwer Academic Publishers.

    Book  Google Scholar 

  16. Zwillinger, D., & Kokoska, S. (2000). CRC standard probability and statistics tables and formulae (p. 31). Boca Raton: CRC Press.

    MATH  Google Scholar 

  17. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  18. Michalopoulos, D. S., & Karagiannidis, G. (2008). Performance analysis of single relay selection in Rayleigh fading. IEEE Transactions on Wireless Commununications, 7(10), 3718–3724.

    Article  Google Scholar 

  19. Han, S., Ahn, S., Oh, E., & Hong, D. (2009). Effect of channel-estimation error on BER performance in cooperative transmission. IEEE Transactions on Vehicular Technology, 58(4), 2083–2088.

    Article  Google Scholar 

  20. Kim, Y. G., & Kim, S. W. (2001). Optimum selection diversity for BPSK signals in Rayleigh fading channels. IEEE Transactions on Communications, 49(10), 1715–1718.

    Article  MATH  Google Scholar 

  21. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Mahdy.

Appendix 1: Derivation of \( \varvec{f}\left( {\varvec{Z}_{{\varvec{SR}}} } \right) \) and \( \varvec{f}\left( {\varvec{y}_{{\varvec{SD}}} } \right) \)

Appendix 1: Derivation of \( \varvec{f}\left( {\varvec{Z}_{{\varvec{SR}}} } \right) \) and \( \varvec{f}\left( {\varvec{y}_{{\varvec{SD}}} } \right) \)

Employing a technique similar to [20], \( f\left( {Z_{SR} } \right) \) is easily derived, with help from [21, Eq. (3.325)] as follows

$$ \begin{aligned} f\left( {Z_{SR} } \right) & = \mathop \int \limits_{0}^{\infty } f_{{Z_{\text{SR}} }} \left( {Z_{\text{SR}} |\left| {h_{\text{SR}} } \right|} \right)f_{{\left| {h_{\text{SR}} } \right|}} \left( {\left| {h_{\text{SR}} } \right|} \right){\text{d}}\left| {h_{\text{SR}} } \right| \\ & = \mathop \int \limits_{0}^{\infty } \frac{1}{{\sqrt {\pi \left| {h_{\text{SR}} } \right|^{2} \sigma_{\text{SR}}^{2} } }} \cdot {\text{Exp}}\left[ { - \frac{{\left( {Z_{\text{SR}} - \left| {h_{\text{SR}} } \right|^{2} \sqrt {E_{b} } } \right)^{2} }}{{\left| {h_{\text{SR}} } \right|^{2} \sigma_{\text{SR}}^{2} }}} \right] \cdot 2\frac{{\left| {h_{\text{SR}} } \right|}}{{\left( {d_{SR} } \right)^{ - a} }}{\text{Exp}}\left[ { - \frac{{\left| {h_{\text{SR}} } \right|^{2} }}{{\left( {d_{SR} } \right)^{ - a} }}} \right]{\text{d}}\left| {h_{\text{SR}} } \right| \\ & = \alpha_{1} {\text{Exp}}\left[ {\beta_{1} Z_{\text{SR}} } \right]{\text{Exp}}\left[ { - \chi_{1} \left| {Z_{\text{SR}} } \right|} \right]. \\ \end{aligned} $$
(29)

where \( \alpha_{1} = 1/\sqrt {\left( {{\text{d}}_{SR} } \right)^{a} \sigma_{\text{SR}}^{2} \left( {\gamma_{\text{SR}} + 1} \right)} \), \( \beta_{1} = 2\sqrt {E_{b} } /\sigma_{\text{SR}}^{2} \) and \( \chi_{1} = 2\sqrt {E_{b} \left( {\gamma_{\text{SR}} + 1} \right)/\gamma_{\text{SR}} } /\sigma_{\text{SR}}^{2} \).

Similarly, we derive \( f\left( {y_{SD} } \right) \), yielding

$$ f\left( {y_{SD} } \right) = \alpha_{2} {\text{Exp}}\left[ {\beta_{2} y_{\text{SD}} } \right]{\text{Exp}}\left[ { - \chi_{2} \left| {y_{\text{SD}} } \right|} \right], $$
(30)

where \( \alpha_{2} = 1/\sqrt {\left( {{\text{d}}_{SD} } \right)^{a} \sigma_{\text{SD}}^{2} \left( {\gamma_{\text{SD}} + 1} \right)} \), \( \beta_{2} = 2\sqrt {E_{b} } /\sigma_{\text{SD}}^{2} \) and \( \chi_{2} = 2\sqrt {E_{b} \left( {\gamma_{\text{SD}} + 1} \right)/\gamma_{\text{SD}} } /\sigma_{\text{SD}}^{2} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mahdy, A., Alexan, W. A Threshold-Free LLR-Based Scheme to Minimize the BER for Decode-and-Forward Relaying. Wireless Pers Commun 100, 787–801 (2018). https://doi.org/10.1007/s11277-018-5349-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5349-6

Keywords

Navigation