Skip to main content
Log in

Restoration of IP Networks by Using a Hybrid Interacting Mechanism Between Layer 2 & 3 in the Networks Over OA&M

Fault Prediction and Mitigation on the IGP Network with Fast Detection by Using the OA&M Ethernet

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Internet generation infrastructure is growing and moving towards a consistency model of high-speed nodes interconnected by optical core networks. Therefore, the interaction between IP and optical network layers, specifically, the routing and signalling aspects, are maturing and they can lead to enhance the services and network performance. At the same time, a consensus has emerged in the industry on utilizing IP-based protocols for the optical control plane. This paper defines a new technique for IP over Optical networks (interacting between bottom layers), considering both the IP-based control plane for optical networks as well as IP-optical network interactions (together referred to as “IP over optical networks”). In this paper, a new technique is proposed that reduces recovery time by making an interoperation between the data link layer (layer 2) with the network layer (layer 3). The proposed technique enables layer 2 with layer 3 to make a hybrid mechanism that improves the recovery time in the network through two cases (1st-Detection and 2nd-Rerouting). The technique involves detecting failure in less time through layer 2 and rerouting traffic through an alternative path between source and destination by using a new algorithm in layer 3 to deliver data packets without the need to wait for the routing protocol to update the network topology and compute the routing table. In case of the network recovery, layer 2 has demonstrated its capability to detect failure extremely quickly shown through the immediate detection of the loss of signals for the link or node. The recovery mechanism, i.e., the rerouting mechanism, which leads the node, switches the data packets through an adjacent node to its destination via the life node. The latter is created by the proposed mechanism before the occurrence of the failure. The aim of this mechanism is to avoid loss of packets, improve QoS and improve recovery time as we have shown in the results shown below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Request for Comments (Informational) RFC 1631, Internet Engineering Task Force, May 1994.

  2. RFC 1812, IETF, June 1995.

  3. RFC 2461, December 2006.

  4. Goldberg, A., & Radzik, T. (1993). A heuristic improvement of the Bellman–Ford algorithm. Applied Mathematics Letters, 6(3), 3–6.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hawkinson, J., & Bates, T. (1996). RFC 1930: Guidelines for creation, selection, and registration of an autonomous system (AS). http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1930.txt.

  6. Cormen, T. H. (2001). Introduction to algorithms. Cambridge: The Massachusetts Institute of Technology.

    MATH  Google Scholar 

  7. Black, U. (2000). IP routing protocols: RIP, OSPF, BGP, PNNI and cisco routing protocols. Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  8. Zeng, X., Bagrodia, R., & Gerla, M. (1998). Glomosim: A library for parallel simulation of large-scale wireless networks. In Proceedings of twelfth workshop on parallel and distributed simulation, 1998. PADS 98. (pp 154–161). IEEE.

  9. Dube, R., Rais, C., Wang, K., & Tripathi, S. (1997). Signal stability-based adaptive routing (ssa) for ad hoc mobile networks. In Personal communications, IEEE (Vol 4, pp. 36–45). IEEE.

  10. Toh, C. (1996). A novel distributed routing protocol to support ad-hoc mobile computing. In Conference on computers and communications, 1996., Conference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix (pp. 480–486). IEEE.

  11. Lee, S., & Gerla, M. (2000). Aodv-br: Backup routing in ad hoc networks. In Wireless communications and networking conference, IEEE (Vol. 3, pp. 1311–1316).

  12. Abramovich, Y. A., Aliprantis, C. D., & Burkinshaw, O. (1995). Another characterization of the invariant subspace problem. In Operator theory in function spaces and banach lattices. The A.C. Zaanen Anniversary Volume, operator theory: advances and applications (Vol. 75, pp. 15–31). Birkhäuser Verlag.

  13. Shahbaz, S., Gholamreza, G., Rabiee, H., & Ghanbari, M. (2006). A distributed intelligent ad-hoc network. In Lecture Notes in Computer Science (pp. 4308–2006).

  14. Mérindol, P., Pansiot, J.J., & Cateloin, S. (2008). Improving load balancing with multipath routing (pp. 1–8).

  15. Aupetit, B. (1991). A primer on spectral theory. New York: Springer.

    Book  MATH  Google Scholar 

  16. Pannell, D., & Chou, H. Y. (2016). Wake-on-frame for frame processing devices, January 5. US Patent 9,229,518.

  17. Perlman, R. (1991). A Comparison between two routing protocols: OSPF and IS-IS. Network Communication, 5(5), 18–24.

    Google Scholar 

  18. Song, Xiaoheng., & Qin, Xia. (2016). Ethernet virtualisation interconnection networks having a hub-spoke structure, January 7. US Patent 20,160,006,657.

  19. Saste, P., & Martis, J. (2016). Converged OAM. In Proceedings of the second international conference on computer and communication technologies (pp. 437–444). Springer.

  20. Sterle, J., Sedlar, U., Rugelj, M., Kos, A., & Volk, M. (2016). Application-driven OAM framework for heterogeneous IOT environments. International Journal of Distributed Sensor Networks, 12, 5649291.

    Article  Google Scholar 

  21. Broch, J., Maltz, D., Johnson, D., Hu, Y., & Jetcheva, J. (1998). A performance comparison of multihop wireless ad hoc network routing protocols. In Proceeding of international conference mobile computing and networking (MobiCom) ACM (pp. 85–97).

  22. Simonič, A. (1990) Grupe operatorjev s pozitivnim spektrom. Master’s thesis, Univerza v Ljubljani, FNT, Oddelek za Matematiko.

  23. Bryant, S., Filsfils, C., Previdi, S., & Shand, M. (2005). Ip fast reroute using tunnels. Work in Progress in IETF.

  24. Baccelli, E., Jacquet, P., Nguyen, D., & Clausen, T. (2009). OSPF multipoint relay (MPR) extension for ad hoc networks. Internet Engineering Task Force, Request For Comments (Experimental) RFC 5449.

  25. Ljubič, J. I., & Macaev, V. I. (1965). On operators with a separable spectrum. American Mathematical Society Translations, 47(2), 89–129.

    Google Scholar 

  26. Eriksson, J., Faloutsos, M., & Krishnamurthy, S. V. (2007). Dart: Dynamic address routing for scalable ad hoc and mesh networks. IEEE/ACM Transactions on Networking, 15(1), 119–132.

    Article  Google Scholar 

  27. Rudin, W. (1973). Functional Analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  28. Conway, J. B. (1990). A course in functional analysis (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  29. Internet Engineering Task Force (IETF) A. Malis, Ed. Request for Comments: 7771 L. Andersson Updates: 6870 Huawei Technologies Co., Ltd. Category: Standards Track H. van Helvoort, January 2016.

  30. Law, D., Dove, D., D’Ambrosia, J., Hajduczenia, M., Laubach, M., & Carlson, S. (2013). Evolution of ethernet standards in the ieee 802.3 working group. IEEE Communications Magazine, 51(8), 88–96.

    Article  Google Scholar 

  31. Cavendish, D., Murakami, K., Yun, S.-H., Matsuda, O., & Nishihara, M. (2002). New transport services for next-generation SONET/SDH systems. IEEE Communications Magazine, 40(5), 80–87.

    Article  Google Scholar 

  32. Kramer, G., & Pesavento, G. (2002). Ethernet passive optical network (epon): Building a next-generation optical access network. IEEE Communications magazine, 40(2), 66–73.

    Article  Google Scholar 

  33. Wiley, W. L., & Bugenhagen, M. K. (2016). System and method for restricting access to network performance information. January 19, US Patent 9,241,271.

  34. Meilik, I., & Stern, Y. (2015). Ethernet operation and maintenance (OAM) with flexible forwarding. March 17, US Patent 8,982,710.

  35. Moy, J. (1998). OSPF: Anatomy of an Internet routing protocol. Boston: Addison-Wesley Professional.

    Google Scholar 

  36. Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.

    Article  MATH  Google Scholar 

  37. Owada, Y., Maeno, T., Imai, H., & Mase, K. (2007). Olsrv2 implementation and performance evaluation with link layer feedback. In Proceedings of the 2007 international conference on Wireless communications and mobile computing (pp. 67–72). ACM.

  38. Rabbat, R., & Siu, K.-Y. (2001). Restoration methods for traffic engineered networks for loop-free routing guarantees. In Proceeding of IEEE International Conference Communications (ICC’01) (Vol. 5, pp. 1566–1570). Helsinki.

  39. Knuth, D. E. (1984). The TeXbook. Boston: Addison-Wesley.

    Google Scholar 

  40. Moy, J. (1995). Link-state routing. In M. E. Steenstrup (Ed.), Routing in communications networks (Chapt. 5, pp. 135–157). Prentice Hall.

  41. Malkin, G. (1998). RIP Version 2 - Carrying Additional Information. Internet Draft, draft-ietf-ripv2-protocol-v2- 05.txt, (work in progress).

  42. Atlas, A., & Zinin, A. (2008). Basic specification for ip fast-reroute: Loop-free alternates. Internet Engineering Task Force, Work in Progress, draft-ietf-rtgwg-ipfrr-spec-base-03.txt.

  43. Han, W., Tellez, L. A., Niu, J., Medina, S., Ferreira, T. L., Zhang, X., et al. (2016). Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metabolism, 23(1), 103–112.

    Article  Google Scholar 

  44. Sueviriyapan, N., Suriyapraphadilok, U., Siemanond, K., Quaglia, A., & Gani, R. (2016). Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes. Journal of Cleaner Production, 111, 231–252.

    Article  Google Scholar 

  45. Zeng, K., Ren, K., & Lou, W. (2005). Geographic on-demand disjoint multipath routing in wireless ad hoc networks. In Military Communications Conference, MILCOM (pp. 1–7). IEEE.

  46. Abujassar, R. S. (2016). Mitigation fault of node mobility for the manet networks by constructing a backup path with loop free: enhance the recovery mechanism for pro-active manet protocol. Wireless Networks, 22(1), 119–133.

    Article  Google Scholar 

  47. Iannaccone, G., Chuah, C. N., Bhattacharyya, S., & Diot, C. (2004). Feasibility of IP restoration in a tier-1 backbone. IEEE Network 18.

  48. Zhong, Z., Nelakuditi, Z., Yu, Y., Lee, S., Wang, J., & Chuah, C. N. (2005). Failure inferencing based fast rerouting for handling transient link and node failures. In INFOCOM 2005. 24th annual joint conference of the ieee computer and communications societies. Proceedings IEEE (Vol. 4, pp. 2859–2863). IEEE.

  49. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Mobile Ad Hoc Networks, 9(1), 28–47.

    Article  Google Scholar 

  50. Xu, P., Yang, C., Song, S., & Bi, G. (2005). Novel multi-path routing scheme for UWB ad hoc network. China Institute of Communications, 10, 17.

    Google Scholar 

  51. Francois, P., Filsfils, C., Evans, J., & Bonaventure, O. (2005). Achieving sub-second igp convergence in large ip networks. ACM SIGCOMM Computer Communication Review, 35(3), 35–44.

    Article  Google Scholar 

  52. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C., & Ganjali, C. (2008). Characterization of failures in an operational ip backbone network. IEEE/ACM Transactions on Networking (TON), 16(4), 749–762.

    Article  Google Scholar 

  53. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C. N., & Diot, C. (2004). Characterization of failures in an IP backbone. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies (Vol. 4, pp. 2307–2317). IEEE.

  54. Iannaccone, G., Chuah, C., Mortier, R., Bhattacharyya, S., & Diot, C. (2002). Analysis of link failures in an IP backbone. In Proceedings of the 2nd ACM SIGCOMM workshop on internet measurment (pp. 237–242). ACM.

  55. Iannaccone, G., Chuah, C. N., Bhattacharyya, S., & Diot, C. (2004). Feasibility of IP restoration in a tier 1 backbone. IEEE Network, 18(2), 13–19.

    Article  Google Scholar 

  56. Labovitz, C., Ahuja, A., Bose, A., & Jahanian, F. (2000). Delayed internet routing convergence. ACM SIGCOMM Computer Communication Review, 30(4), 175–187.

    Article  Google Scholar 

  57. Labovitz, C., Ahuja, A., & Jahanian, F. (1999). Experimental study of internet stability and backbone failures. In Twenty-ninth annual international symposium on fault-tolerant computing, digest of papers (pp. 278–285). IEEE.

  58. Goyal, M., Ramakrishnan, K. K., & Feng, W. (2003). Achieving faster failure detection in ospf networks. In IEEE international conference on computer communications, 2003. ICC’03 (Vol. 1, pp. 296–300). IEEE.

  59. Gill, P., Jain, N., & Nagappan, N. (2011). Understanding network failures in data centers: measurement, analysis, and implications. In Proceedings of SIGCOMM.

  60. Gjoka, M., Ram, V., & Yang, X. (2007). Evaluation of ip fast reroute proposals. In 2nd international conference on communication systems software and middleware, COMSWARE (pp. 1–8). IEEE.

  61. Lakshminarayanan, K., Caesar, M., Rangan, M., Anderson, T., Shenker, S., & Stoica, I. (2007). Achieving convergence-free routing using failure-carrying packets. In ACM SIGCOMM computer communication review (Vol. 37, pp. 241–252). ACM.

  62. Menth, M., Hartmann, M., Martin, R., Cicic, T., & Kvalbein, A. (2010). Loop-free alternates and not-via addresses: A proper combination for IP fast reroute? Computer Networks, 54(8), 1300–1315.

    Article  MATH  Google Scholar 

  63. Francois, P., & Bonaventure, O. (2005). Avoiding transient loops during IGP convergence in IP networks. In Proceedings 24th annual joint conference of the IEEE computer and communications societies. IEEE INFOCOM (Vol. 1, pp. 237–247). IEEE.

  64. Bryant, S., Shand, M., & Previdi, S. (2006) IP fast reroute using not-via addresses. draft-bryant-shand-ipfrr-notvia-addresses-03. txt.

  65. Hansen, A. F., Cicic, T., & Gjessing, S. (2006). Alternative schemes for proactive IP recovery. In 2006 2nd conference on next generation internet design and engineering, 2006. NGI’06 (p. 8). IEEE.

  66. Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z. L., & Chuah, C. N. (2007). Fast local rerouting for handling transient link failures. IEEE/ACM Transactions on Networking, 15(2), 359–372.

    Article  Google Scholar 

  67. Nelakuditi, S., Lee, S., Yu, Y., & Zhang, Z. (2003). Failure insensitive routing for ensuring service availability. In International workshop of quality of service 2003. IWQoS’03.

  68. Liu, Y., & Reddy, N. (2004). A fast rerouting scheme for OSPF/IS-IS networks (pp. 47–52).

  69. Shand, M., & Bryant, S. (2010). IP fast reroute framework. Internet Engineering Task Force (IETF) M. Shand Request for Comments: 5714 S. Bryant Category: Informational Cisco Systems.

  70. Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A., et al. (2016). The greenland ice sheet as a hotspot of phosphorus weathering and export in the arctic. Global Biogeochemical Cycles, 30, 191–210.

    Article  Google Scholar 

  71. Ulrich, A. E., Malley, D. F., & Watts, P. D. (2016). Lake winnipeg basin: Advocacy, challenges and progress for sustainable phosphorus and eutrophication control. Science of The Total Environment, 542, 1030–1039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwan S. Abujassar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abujassar, R.S. Restoration of IP Networks by Using a Hybrid Interacting Mechanism Between Layer 2 & 3 in the Networks Over OA&M. Wireless Pers Commun 100, 819–849 (2018). https://doi.org/10.1007/s11277-018-5351-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5351-z

Keywords

Navigation