Skip to main content
Log in

Perturbation Sensitivity Analysis and Dynamic Topology Optimization for Heat Conduction Structure

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Topology optimization is a fundamental problem for steady heat conduction. Due to the unidirectional treatment for the intermediate density elements in the traditional topology optimization, we propose a Bi-Directional Interpolation Model (BDIM) that intermediate density elements are judged by a threshold, and establish optimization model. Besides, considering the generation of new hole boundary in the process of heat conduction enhancement topology optimization, we study the perturbation sensitivity analysis with respect to new hole, and present an adaptive dynamic boundary method for the new boundary in the optimization process. Furthermore, based on the domain perturbation technique and Lebesgue differential theory, the topological derivative formulas with different objective functions subjected to three kinds of boundary conditions are derived for the control system of Poisson equation. Finally, a number of numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method for designing the heat conduction structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gao, X. J., & Ma, H. T. (2015). Topology optimization of continuum structures under buckling constraints. Computers & Structures, 157, 142–152.

    Article  Google Scholar 

  2. Ling, Z., Ronglu, X., & Yi, W. (2014). Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach. Journal of Vibration and Shock, 33(8), 165–170.

    Google Scholar 

  3. Peng, Y., Liu, W. Y., Liu, B., Liu, J. Q., Huang, K. D., Wang, L., et al. (2015). The performance of the novel vapor chamber based on the leaf vein system. International Journal of Heat and Mass Conduction, 86, 656–666.

    Article  Google Scholar 

  4. Soprani, S., Haertel, J. H. K., Lazarov, B. S., Sigmund, O., & Engelbrecht, K. (2016). A design approach for integrating thermoelectric devices using topology optimization. Applied Energy, 176, 49–64.

    Article  Google Scholar 

  5. Chen, K., Wang, S. F., & Song, M. X. (2016). Optimization of heat source distribution for two-dimensional heat conduction using bionic method. International Journal of Heat and Mass Conduction, 93, 108–117.

    Article  Google Scholar 

  6. Bejan, A. (2000). From heat conduction principles to shape and structure in nature: Construct theory. International Journal of Heat and Mass Conduction, 122(3), 430–449.

    Google Scholar 

  7. Takezawa, A., Yoon, G. H., Jeong, S. H., Kobashi, M., & Kitamura, M. (2014). Structural topology optimization with strength and heat conduction constraints. Computer Methods in Applied Mechanics and Engineering, 276, 341–361.

    Article  MathSciNet  Google Scholar 

  8. Park, C. W., & Yoo, Y. M. (1988). Shape design sensitivity analysis of a two-dimensional heat conduction system using the boundary element method. Computer & Structures, 28(4), 543–550.

    Article  Google Scholar 

  9. Saigal, S., & Chandra, A. (1991). Shape sensitivities and optimal configurations for heat diffusion problems: A BEM approach. Journal of Heat Conduction, 113, 287–295.

    Article  Google Scholar 

  10. Hou, G. J. W., & Sheen, J. (1993). Numerical-methods for 2nd-order shape sensitivity analysis with applications to heat-conduction problems. International Journal for Numerical Methods in Engineering, 36(3), 417–435.

    Article  Google Scholar 

  11. Zhuang, C. G., Xiong, Z. H., & Ding, H. (2010). Topology optimization of multi-material for the heat conduction problem based on the level set method. Engineering Optimization, 42(9), 811–831.

    Article  MathSciNet  Google Scholar 

  12. Zhuang, C. G., Xiong, Z. H., & Ding, H. (2007). A level set method for topology optimization of heat conduction problem under multiple load cases. Computer Methods in Applied Mechanics and Engineering, 196, 1074–1084.

    Article  MathSciNet  Google Scholar 

  13. Zuo, K. T., Chen, L. P., & Zhang, Y. Q. (2015). Structural optimal design of heat conductive body with topology optimization method. Journal of Mechanical Engineering, 41(4), 13–16.

    Article  Google Scholar 

  14. Cheng, X. G., Li, Z. X., & Guo, Z. Y. (2004). Variational principles in heat conduction. Journal of Engineering Thermophysics, 25(03), 457–459.

    MathSciNet  Google Scholar 

  15. Cheng, X. G. (2004). Entranspy and its applications in heat conduction optimization, Ph.D. thesis, Tsinghua University, Beijing, China.

  16. Wu, J., Cheng, X. G., & Meng, J. A. (2006). Potential capacity dissipation extremum and entropy generation minimization in laminar convective heat conduction. Journal of Engineering Thermophysics, 27(1), 100–102.

    Google Scholar 

  17. Gu, Y. X., Chen, B. S., Zhang, H. W., & Granghi, R. (2002). A sensitivity analysis method for linear and non-linear transient heat conduction with precise time integration. Structural and Multidisciplinary Optimization, 24(1), 23–37.

    Article  Google Scholar 

  18. Gu, Y. X., Liu, T., & Kang, Z. (2004). Coupling sensitivity analysis and design optimization of thermo-structural transient responses. Acta Mechanica Sinica, 36(1), 37–42.

    Google Scholar 

  19. Burger, F. H., Dirker, J., & Meyer, J. P. (2013). Three-dimensional conductive heat conduction topology optimisation in a cubic domain for the volume-to-surface problem. International Journal of Heat and Mass Conduction, 67, 214–224.

    Article  Google Scholar 

  20. Li, Q., Steven, G. P., & Xie, Y. M. (2001). Thermoelastic topology optimization for problems with varying temperature fields. Journal of Thermal Stresses, 24(4), 347–366.

    Article  Google Scholar 

  21. Li, Q., Steven, G. P., Querin, O. M., & Xie, Y. M. (2001). Structural topology design with multiple thermal criteria. Engineering Computations, 17, 715–734.

    Article  Google Scholar 

  22. Li, Q., Steven, G. P., Xie, Y. M., & Querin, O. M. (2004). Evolutionary topology optimization for temperature reduction of heat conducting field. International Journal of Heat and Mass Conduction, 47(23), 5071–5083.

    Article  Google Scholar 

  23. Xu, X. H., Liang, X. G., & Ren, J. X. (2007). Optimization of heat conduction using combinatorial optimization algorithms. International Journal of Heat and Mass Conduction, 50(9–10), 1675–1682.

    Article  Google Scholar 

  24. Anflor, C. T. M., Albuquerque, E. L., & Wrobel, L. C. (2014). A topological optimization procedure applied to multiple region problems with embedded sources. International Journal of Heat and Mass Conduction, 78, 121–129.

    Article  Google Scholar 

  25. Jing, G. X., Isakari, H., Matsumoto, T., Yamada, T., & Takahashi, T. (2015). Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat conduction boundary condition. Engineering Analysis with Boundary Elements, 61, 61–70.

    Article  MathSciNet  Google Scholar 

  26. Wang, M. Y., & Wang, X. M. (2005). A level-set based variational method for design and optimization of heterogeneous objects. Computer-Aided Design, 37(3), 321–337.

    Article  Google Scholar 

  27. Li, J. C., & Zhang, P. (2012). Research on topology optimization based on interval sensitivity analysis method. China Mechanical Engineering, 23(14), 1659–1662.

    Google Scholar 

  28. Li, J. C., Li, Y. G., & Han, J. J. (2016). Research on continuum structure topology optimization based on bi-directional interpolation model. Mechanical Science and Technology for Aerospace Engineering, 35(2), 222–226.

    Google Scholar 

  29. Özdemir, İ. (2014). Topological derivative based optimization of 3D porous elastic microstructures. Computational Materials Science, 81, 319–325.

    Article  Google Scholar 

  30. Giusti, S. M., & Novotny, A. A. (2012). Topological derivative for an anisotropic and heterogeneous heat diffusion problem. Mechanics Research Communications, 46, 26–33.

    Article  Google Scholar 

  31. Abdelwahe, M., Hassine, M., & Masmoudi, M. (2009). Optimal shape design for fluid flow using topological perturbation technique. Journal of Mathematical Analysis and Application, 356(02), 548–563.

    Article  MathSciNet  Google Scholar 

  32. Garreau, S., Guillaume, P. H., & Masmoudi, M. (2001). The topological asymptotic for PDE systems: The elasticity case. SIAM Journal on Control and Optimization, 39, 1756–1778.

    Article  MathSciNet  Google Scholar 

  33. Bendsoe, M. P., & Sigraund, O. (2003). Topology optimization: Theory, methods and applications. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  34. Zhou, Z. B. (2001). Minimum energy dissipation principle and its application. Beijing: Science Press.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Talent Foundation of Science & Technology Department of Guizhou Province (20175117), Major Science and Technology Special Project of Guizhou province (20163001) and Key Laboratory Project of Guizhou Provincial Education Department (GY20143026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiachun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zou, Z. & Chen, Y. Perturbation Sensitivity Analysis and Dynamic Topology Optimization for Heat Conduction Structure. Wireless Pers Commun 103, 657–676 (2018). https://doi.org/10.1007/s11277-018-5468-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5468-0

Keywords

Navigation