Skip to main content
Log in

Performance Analysis of Novel Compact Octagonal Shaped Fractal Antenna for Broadband Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Antenna plays an important role in any part of the communication system. It has to be designed very cautiously to provide improved system performance to meet the developments in wireless technologies with various design constraints such as small size, low cost, high data, low power consumption and wideband capabilities. Several efforts have been made by various investigators around the globe to amalgamate benefits of fractal structures with electromagnetic concepts and applications to reduce the size of the antenna without obstructing the performance of the antennas. This paper proposes a novel compact octagonal shaped broadband fractal antenna. The proposed antenna was designed on an inexpensive FR4-epoxy substrate and simulated using the High Frequency Structure Simulator. The antenna resonates in dual bands in 3.8 and 1 GHz with lowest return loss of − 32.80 dB and gain of 10.22 dB while maintaining the VSWR in the 2:1 level. Attempts have been made to reduce the size and improve the bandwidth using fractal concept and truncation of ground plane. The fabricated antenna was verified experimentally and the results are agreeing with the simulations. The point of attraction of this antenna is the use of single patch for broadband coverage with easy fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Federal Communication Commission. (2002). First report and order, revision of part 15 of the commissions rule regarding ultra-wideband transmission systems. Technical report, Washington, DC, April 2002.

  2. Chen, T., Matinmikko, M., Del Ser, J., & Zhang, J. (2012). Energy efficient spectrum access in cognitive wireless access networks. Journal of Green Engineering, 2(4), 305–328.

    Google Scholar 

  3. Khanna, A., Srivastava, D. K., & Saini, J. P. (2015). Bandwidth enhancement of modified square fractal microstrip patch antenna using gap-coupling. Engineering Science and Technology, an International Journal, 18(2), 286–293.

    Article  Google Scholar 

  4. Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2017). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102.

    Article  Google Scholar 

  5. Tripathi, S., Mohan, A., & Yadav, S. (2014). Ultra wideband (UWB) antenna using Minkowski like fractal geometry. Microwave & Optical Technology Letters, 56(10), 2273–2279.

    Article  Google Scholar 

  6. Agrawal, S., Gupta, R. D., & Behra, S. K. (2012) A hexagonal shaped fractal antenna for UWB application. In International conference on communications, devices and intelligent systems (pp. 535–538), December 2012.

  7. Balanis, C. A. (2005). Antenna theory (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  8. Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-International Journal of Electronics and Communications, 85, 159–168.

    Article  Google Scholar 

  9. Pozar, D. M. (2012). Microwave engineering (4th ed., pp. 135–152). Hoboken: Wiley.

    Google Scholar 

  10. Suganthi, S., & Raghavan, S. (2011). Design and simulation of planar Minkowski fractal antenna. In Wireless communication, vehicular technology, information theory and aerospace & electronics systems technology (wireless VITAE) (pp. 1–5), March 2011.

  11. Vinoy, K. J., & Pal, A. (2010). Dual-frequency characteristics of Minkowski-square ring antennas. IET Microwaves, Antennas and Propagation, 4(2), 219–224.

    Article  Google Scholar 

  12. Karim, M. N. A., Rahim, M. K. A., & Masri, T. (2009). Fractal koch dipole antenna for ultra-high frequency band (UHF) application. Microwave & Optical Technology Letters, 51(11), 2612–2614.

    Article  Google Scholar 

  13. Vivek, R., Yamuna, G., Jivani, M. N., & Kosta, Y. P. (2015). A novel miniaturized fractal patch antenna for wireless applications. In IEEE proceedings on international workshop on antenna innovations and modern technologies (iAIM-2015), Proceedings, December 2015.

  14. Pourahmadazar, J., Ghobadi, C., & Nourinia, J. (2011). Novel modified pythagorean tree fractal monopole antennas for UWB applications. IEEE Antennas and Wireless Propagation Letters, 10, 484–487.

    Article  Google Scholar 

  15. Vivek, R., Yamuna, G., Kosta, Y. P., Suganthi, S. & Jivani, M. N. (2017). Crown shaped broadband monopole fractal antenna for 4G wireless applications. In IEEE WiSPNET 2017 proceedings (pp. 1099–1103), March 2017.

  16. Kumar, R., & Sawant, K. K. (2011). Design of CPW-FEED inscribed square circular fractal antenna for UWB applications. Microwave & Optical Technology Letters, 53, 1079–1083.

    Article  Google Scholar 

  17. Bhandari, K., & Rahmat Samii, Y. (2007). A miniaturized elliptic-card UWB antenna with WLAN band rejection for wireless communications. IEEE Transactions on Antennas and Propagation, 55(11), 3326–3332.

    Article  Google Scholar 

  18. Verma, A. K., & Nasimuddin. (2003). Analysis of circular microstrip patch antenna as an equivalent rectangular microstrip antenna on thin iso/anisotropic substrate. In IEEE proceedings, microwave antenna propagation (Vol. 150(4)), August 2003.

  19. Ray, K. P., Pandey, M. D., & Krsihnan, S. (2007). Determination of resonance frequency of hexagonal and half hexagonal microstrip antenna. Microwave & Optical Technology Letters, 49(11), 2876–2879.

    Article  Google Scholar 

  20. Wenninger, M. J. (1974). Polyhedron models. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  21. Gautam, A. K., Yadav, S., & Kanaujia, B. K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Antennas Wireless Propagation Letters, 12, 151–154.

    Article  Google Scholar 

  22. Kumar, Y., & Singh, S. (2015). A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wireless Personal Communications, 84(1), 57–67.

    Article  Google Scholar 

  23. Kyriazis, G., & Rouskas, A. (2017). Joint access and backhaul power “consumption optimization in heterogeneous mobile broadband networks”. Journal of Green Engineering, 6(4), 337–368.

    Article  Google Scholar 

  24. Shafie, S. N., Adam, I., & Soh, P. J. (2010). Design and simulation of a modified minkowski fractal antenna for tri-band application. In International conference on mathematical analytical modelling and computer simulation (pp. 568–570).

  25. Falconer, K. (1990). Fractal geometry: Mathematical foundations and applications. New York: Wiley.

    MATH  Google Scholar 

  26. Agrawal, S., Gupta, R. D., & Behera, S. K. (2012). A hexagonal shaped fractal antenna for UWB application. In 2012 International conference on communications, devices and intelligent systems (CODIS) (pp. 535–538), December 28–29, 2012.

  27. Brito, D. B., Araújo, L. M., Assunção, A. G. D. & Maniçoba, R. H. C. (2013). A Minkowski fractal frequency selective surface with high angular stability. In 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC) (pp. 13–16).

  28. Krzysztofik, W. J. (2013). Fractal geometry in electromagnetics applications-from antenna to metamaterials. Microwave Review, 19(2), 3–14.

    Google Scholar 

  29. Wang, P., Wen, G. J., Huang, Y. J., & Sun, Y. H. (2012). Compact CPW fed planar monopole antenna with distinct triple bands for Wi-Fi/WiMAX applications. Electronics Letters, 48, 357–359.

    Article  Google Scholar 

  30. Tripathi, S., Mohan, A., & Yadav, S. (2014). A multinotched octagonal shaped UWB antenna. Microwave & Optical Technology Letters, 56(11), 2469–2473.

    Article  Google Scholar 

  31. Gunavathy, N., Pandeswari, R., & Raghavan, S. (2009). A CPW fed octagon shaped aperture antenna for lower band UWB applications. In IEEE INDICON proceedings, December 2009.

  32. Chakradhar, K. S. & Rama Rao, B. (2017). Implementation of octagonal and hexagonal strip monopole antennas for UWB applications. ARPN Journal of Engineering and Applied Sciences, 12(22), 6587–6594.

    Google Scholar 

  33. Sarkar, S. B. (2016). Design and analysis of multiband octagonal microstrip patch antenna with different annular ring. ICTACT Journal on Microelectronics, 2(2), 237–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vivek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivek, R., Yamuna, G., Suganthi, S. et al. Performance Analysis of Novel Compact Octagonal Shaped Fractal Antenna for Broadband Wireless Applications. Wireless Pers Commun 103, 1325–1340 (2018). https://doi.org/10.1007/s11277-018-5511-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5511-1

Keywords

Navigation