Skip to main content

Advertisement

Log in

Hybrid FGWO Based FLCs Modeling for Performance Enhancement in Wireless Body Area Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The progression over wireless technologies paves the way for the emergence of wireless body area networks (WBAN) towards several motivating applications. Specifically, in terms of health concern applications, both the performance and reliability is regarded as the essential elements of WBANs. Many of the soft computational methodologies employed the manual modeling of fuzzy logic controllers (FLCs) by evolutionary algorithms in WBAN. This existing model encodes the entire control parameters of “FLCs” membership functions. This leads to the degradation of network performance by maximizing the latency. In order to rectify this issue, here we propose a hybrid firefly grey wolf optimizer (hybrid FGWO) approach for the optimal modeling of “FLC”. The major goal behind our proposed work relays on the optimal selection of control parameters from the “FLCs” with hybrid FGWO. The modeling of “FLCs” is carried out with CLFB (cross-layer fuzzy logic dependent back-off controller) mechanism to control the frequent access of channels. The efficiency of the “FLCs” model is enhanced by utilizing the coding technique known as unrestricted coding scheme. The performance of our hybrid FGWO approach is contrasted with three conventional “EAs”. Two major modeling goals are established whereas, the initial goal aims for the modeling of “FLCs” on particular configuration of network and the second goal aims on the modeling of “FLCs” over multiple network configurations. The “FLCs” modeled by means of our proposed hybrid FGWO approach exhibits its performance in terms of throughput, latency and packet delivery ratio with some of the challenging algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2013). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys Tutorials, 16(3), 1635–1657.

    Article  Google Scholar 

  2. Otal, B., Alonso, L., & Verikoukis, C. (2010). Design and analysis of an energy-saving distributed MAC mechanism for wireless body sensor networks. EURASIP Journal on Wireless Communications and Networking, 27(4), 571407.

    Article  Google Scholar 

  3. Alonso, J. M., Castiello, C., & Mencar, C. (2015). Interpretability of fuzzy systems, Current Research Trends and Prospects (pp. 219–237). Berlin: Springer.

    Google Scholar 

  4. Nekooei, S. M., Chen, G., & Rayudu, R. K. (2015) A fuzzy logic based cross-layer mechanism for medium access control in WBAN. In IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1094–1099).

  5. Otal, B., Alonso, L., & Verikoukis, C. (2009). Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 553565.

    Article  Google Scholar 

  6. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2013) D2MAC: Dynamic delayed medium access control (MAC) protocol with fuzzy technique for wireless body area networks. In IEEE international conference on body sensor networks (BSN) (pp. 1–6).

  7. Chen, M., Zhu, X., & Zhu, H. (2013). Service adaptively medium access control algorithm based on fuzzy logical for energy harvesting wireless sensor networks. Journal of Networks, 9(9), 2336–2341.

    Google Scholar 

  8. Kim, J., Moon, Y., & Zeigler, B. (1995). Designing fuzzy net controllers using genetic algorithms. IEEE Control Systems, 15(3), 66–75.

    Article  Google Scholar 

  9. Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of fMACg protocols for fWBANg networks. Journal of Network and Computer Applications, 46, 362–373.

    Article  Google Scholar 

  10. Bingul, Z., & Karahan, O. (2011). A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory contro. Expert Systems with Applications, 38(1), 1017–1031.

    Article  Google Scholar 

  11. Hachicha, N., Jarboui, B., & Siarry, P. (2011). A fuzzy logic control using a differential evolution algorithm aimed at modeling the financial market dynamics. Information Sciences, 181(1), 79–91.

    Article  Google Scholar 

  12. Pishkenari, H. N., Mahboobi, S., & Alasty, A. (2011). Optimum synthesis of fuzzy logic controller for trajectory tracking by differential evolution. Scientia Iranica, 18(2), 261–267.

    Article  Google Scholar 

  13. Liu, B. D., Chen, C. Y., & Tsao, J. Y. (2001). Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(1), 32–53.

    Article  Google Scholar 

  14. Ibarra, E., Antonopoulos, A., Kartsakli, E., Rodrigues, J. J. P. C., & Verikoukis, C. (2016). Qos-aware energy management in body sensor nodes powered by human energy harvesting. IEEE Sensors Journal, 16(2), 542–549.

    Article  Google Scholar 

  15. Ibarra, E., Antonopoulos, A., Kartsakli, E., Rodrigues, J. J. P. C., & Verikoukis, C. (2014) Joint power-qos control scheme for energy harvesting body sensor nodes. In 2014 IEEE international conference on communications (ICC) (pp. 3511–3516).

  16. Ibarra, E., Antonopoulos, A., Kartsakli, E., & Verikoukis, C. (2015). Heh-bmac: Hybrid polling mac protocol for WBANs operated by human energy harvesting. Telecommunication Systems, 58(2), 111–124.

    Article  Google Scholar 

  17. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. Wireless Networks, 21(8), 2571–2592.

    Article  Google Scholar 

  18. IEEE Standard for local and metropolitan area networks-part 15.4. (2011). Low-rate wireless personal area networks (LR-WPANs), IEEE Std 802.15.4- 2011 (Revision of IEEE Std 802.15.4-2006) (pp. 1–314).

  19. Ha, J. Y., Kim, T. H., Park, H. S., Choi, S., & Kwon, W. H. (2007). An enhanced CSMA-CA algorithm for IEEE 802.15.4 LR-WPANs. IEEE Communications Letters, 11(5), 461–463.

    Article  Google Scholar 

  20. Wong, C. M., & Lee, B. H. (2012). An improvement of slotted CSMA/CA algorithm in IEEE 802.15.4 medium access layer. Wireless Personal Communications, 63(4), 807–822.

    Article  Google Scholar 

  21. Espinosa, J., Vandewalle, J., & Wertz, V. (2005). Constructing fuzzy models from input-output data. In F. Logic (Ed.), Identification and predictive control, Advances in Industrial Control (pp. 21–58). London: Springer.

    Google Scholar 

  22. Mahmood, D., Khan, Z. A., Qasim, U., Umair Naru, M., Mukhtar, S., Akram, M. I., et al. (2014). Analyzing and evaluating contention access period of slotted CSMA/CA for IEEE802. 15.4. Procedia Computer Science, 34, 204–211.

    Article  Google Scholar 

  23. Cassillas, J., Cordon, O., del Jesus, M., & Herrera, F. (2005). Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transactions on Fuzzy Systems, 13(1), 13–29.

    Article  Google Scholar 

  24. Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. International Journal of Intelligent Engineering and Systems, 9(3), 117–126.

    Article  Google Scholar 

  25. Bachache, N., & Wen, J. (2013). Design fuzzy logic controller by particle swarm optimization for wind turbine. In Y. Tan, Y. Shi, & H. Mo (Eds.), Advances in swarm intelligence (Vol. 7928, pp. 152–159)., Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  26. Martinez-Soto, R, Castillo, O., Aguilar, L., & Melin, P. (2010). Fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization. In Advances in soft computing, Lecture Notes in Computer Science, (Vol. 6438, pp. 475–486). Berlin: Springer.

  27. Marinaki, M., Marinakis, Y., & Stavroulakis, G. (2011). Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Structural and Multidisciplinary Optimization, 43(1), 29–42.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marinaki, M., Marinakis, Y., & Stavroulakis, G. E. (2015). Fuzzy control optimized by a multi-objective differential evolution algorithm for vibration suppression of smart structures. Computers and Structures, 147, 126–137.

    Article  MATH  Google Scholar 

  29. Ching-Chang, W., Hou-Yi, W., & Shih-An, L. (2009). PSO-based motion fuzzy controller design for mobile robots. International Journal of Fuzzy Systems, 10(1), 284–292.

    MathSciNet  Google Scholar 

  30. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  31. Sahoo, A., & Chandra, S. (2017). Multi-objective grey wolf optimizer for improved cervix lesion classification. Applied Soft Computing, 52, 64–80.

    Article  Google Scholar 

  32. Yang, X. S., & Deb, S. (2010). Eagle strategy using Levy walk and firefly algorithms for stochastic optimization. In J. R. Gonzalez et al. (Eds.), Nature inspired cooperative strategies for optimization (NISCO 2010), studies in computational intelligence (Vol. 284, pp. 101–111). Berlin: Springer.

    Google Scholar 

  33. Baykasoğlu, A., & Ozsoydan, F. B. (2014). An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Systems with Applications, 41, 3712–3725.

    Article  Google Scholar 

  34. Rezaee, A. A., & Pasandideh, F. (2017). A fuzzy congestion control protocol based on active queue management in wireless sensor networks with medical applications. Wireless Personal Communications, pp. 1–28.

  35. Collotta, M., Gentile, L., Pau, G., & Scata, G. (2014). Flexible IEEE 802.15. 4 deadline-aware scheduling for DPCSs using priority-based CSMA-CA. Computers in Industry, 65(8), 1181–1192.

    Article  Google Scholar 

  36. Yasari, A. K. I, Latiff, L. A., Dziyaudin, D. A., Lilo, M. A., Aljeroudi, Y., & Atee, H. A. (2017) Flexible online multi-objective optimization framework for ISA100. 11a standard in beacon-enabled CSMA/CA mode. Computers & Electrical Engineering.

  37. Zhou, J., Guo, A., Juan, X., & Steven, S. (2014). An optimal fuzzy control medium access in wireless body area networks. Neurocomputing, 142, 107–114.

    Article  Google Scholar 

  38. Health informatics–PoC medical device communication–part 00101. (2008). Guide {guidelines for the use of RF wireless technology, IEEE Std 11073- 00101-2008 (2008) (pp. 1–99).

  39. The Network Simulator version 2 (NS2). Home Page. http://www.isi.edu/nsnam/NS2/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sindhuja Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, S.S., Baskaran, K. Hybrid FGWO Based FLCs Modeling for Performance Enhancement in Wireless Body Area Networks. Wireless Pers Commun 100, 1163–1199 (2018). https://doi.org/10.1007/s11277-018-5626-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5626-4

Keywords

Navigation