Skip to main content
Log in

Octopus Algorithm for Wireless Personal Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Bio-inspired computation has opened a new window towards the solution of different computational problems. In this article we propose octopus algorithm for the first time based on the arm movement of octopus during feeding and then applied the algorithm in the field of mobile network to achieve power optimization. The mathematical model of octopus arm movement is presented in this article. Three power-efficient applications for recovery management and offloading in fifth generation mobile network are proposed based on the octopus algorithm. Simulation results prove that use of octopus algorithm optimizes the power consumption in mobile network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mukherjee, A., & De, D. (2016). Location management in mobile network: A survey. Computer Science Review, 19, 1–14.

    Article  MathSciNet  Google Scholar 

  2. Abdulkafi, A. A., Kiong, T. S., Chieng, D., Ting, A., & Koh, J. (2014). Energy efficiency improvements in heterogeneous network through traffic load balancing and sleep mode mechanisms. Wireless Personal Communications, 75(4), 2151–2164.

    Article  Google Scholar 

  3. Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.

    Article  Google Scholar 

  4. Alsharif, M. H., Nordin, R., & Ismail, M. (2014). Classification, recent advances and research challenges in energy efficient cellular networks. Wireless Personal Communications, 77(2), 1249–1269.

    Article  Google Scholar 

  5. Deb, P., Mukherjee, A., & De, D. (2017). Study of indoor path loss computational models for femtocell based mobile network. Wireless Personal Communications, 95(3), 3031–3056.

    Article  Google Scholar 

  6. Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.

    Article  Google Scholar 

  7. Andrews, J. G., Zhang, X., Durgin, G. D., & Gupta, A. K. (2016). Are we approaching the fundamental limits of wireless network densification? IEEE Communications Magazine, 54(10), 184–190.

    Article  Google Scholar 

  8. Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1), 84–106.

    Article  Google Scholar 

  9. Wang, Y., Chen, R., & Wang, D. C. (2015). A survey of mobile cloud computing applications: Perspectives and challenges. Wireless Personal Communications, 80(4), 1607–1623.

    Article  MathSciNet  Google Scholar 

  10. Mukherjee, A., & De, D. (2016). Low power offloading strategy for femto-cloud mobile network. Engineering Science and Technology: An International Journal, 19(1), 260–270.

    Google Scholar 

  11. Mukherjee, A., Deb, P., & De, D. (2016). Natural computing in mobile network optimization. In Handbook of research on natural computing for optimization problems (pp. 382–408). IGI Global. https://doi.org/10.4018/978-1-5225-0058-2.ch017.

  12. Mellal, M. A., & Williams, E. J. (2017). A survey on ant colony optimization, particle swarm optimization, and cuckoo algorithms. In Handbook of research on emergent applications of optimization algorithms (p. 37). IGI Global. https://doi.org/10.4018/978-1-5225-2990-3.ch002.

  13. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  14. Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. In Proceedings of the 2001 congress on evolutionary computation, 2001 (Vol. 1, pp. 81–86). IEEE.

  15. Panag, T. S., & Dhillon, J. S. (2018). A novel random transition based PSO algorithm to maximize the lifetime of wireless sensor networks. Wireless Personal Communications, 98(2), 2261–2290.

    Article  Google Scholar 

  16. Singh, S. P., & Sharma, S. C. (2018). A PSO based improved localization algorithm for wireless sensor network. Wireless Personal Communications, 98(1), 487–503.

    Article  Google Scholar 

  17. Ahmed, I., & Majumder, S. P. (2008, December). Adaptive resource allocation based on modified genetic algorithm and particle swarm optimization for multiuser OFDM systems. In International conference on  electrical and computer engineering, 2008. ICECE 2008 (pp. 211–216). IEEE.

  18. Karaboga, D., & Akay, B. (2009). A survey: Algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31(1–4), 61–85.

    Article  Google Scholar 

  19. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2–3), 243–278.

    Article  MathSciNet  MATH  Google Scholar 

  20. Al Salami, N. M. (2009). Ant colony optimization algorithm. UbiCC Journal, 4(3), 823–826.

    Google Scholar 

  21. Siddavaatam, R., Anpalagan, A., Woungang, I., & Misra, S. (2014). Ant colony optimization based sub-channel allocation algorithm for small cell HetNets. Wireless Personal Communications, 77(1), 411–432.

    Article  Google Scholar 

  22. Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., & Michael, L. (2013). Congestion control in wireless sensor networks based on bird flocking behavior. Computer Networks, 57(5), 1167–1191.

    Article  Google Scholar 

  23. De, D., & Mukherjee, A. (2017). Group handoff management in low power microcell-femtocell network. Digital Communications and Networks, 3(1), 55–65.

    Article  Google Scholar 

  24. Mukherjee, A., De, D., & Roy, D. G. (2016). A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing (Early Access). https://doi.org/10.1109/TCC.2016.2586061.

  25. Roy, D. G., De, D., Mukherjee, A., & Buyya, R. (2017). Application-aware cloudlet selection for computation offloading in multi-cloudlet environment. The Journal of Supercomputing, 73(4), 1672–1690.

    Article  Google Scholar 

  26. Tawalbeh, L. A., Jararweh, Y., & Dosari, F. (2015). Large scale cloudlets deployment for efficient mobile cloud computing. Journal of Networks, 10(1), 70–77.

    Article  Google Scholar 

  27. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

    Article  Google Scholar 

  28. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Springer, Berlin. https://doi.org/10.1007/978-3-642-12538-6_6.

  29. Yang, X. S., & Hossein Gandomi, A. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464–483.

    Article  Google Scholar 

  30. Gutfreund, Y., Flash, T., Yarom, Y., Fiorito, G., Segev, I., & Hochner, B. (1996). Organization of octopus arm movements: A model system for studying the control of flexible arms. Journal of Neuroscience, 16(22), 7297–7307.

    Article  Google Scholar 

  31. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., & Flash, T. (2005). Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. Journal of Neurophysiology, 94(2), 1443–1458.

    Article  Google Scholar 

  32. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., & Srivastava, M. (2005, April). Design considerations for solar energy harvesting wireless embedded systems. In Fourth international symposium on information processing in sensor networks, 2005. IPSN 2005 (pp. 457–462). IEEE.

  33. Khosravi, A., Nadjaran Toosi, A., & Buyya, R. (2017). Online virtual machine migration for renewable energy usage maximization in geographically distributed cloud data centers. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4125.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Department of Science and Technology (DST–FIST) and TEQIP III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwesha Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., De, D. Octopus Algorithm for Wireless Personal Communications. Wireless Pers Commun 101, 531–565 (2018). https://doi.org/10.1007/s11277-018-5703-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5703-8

Keywords

Navigation