Skip to main content
Log in

Switching Between Unit Cells: A Tool to Break the Limits on the Performance of Reflectarray Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For decades, the design of reflectarray antennas followed a unified strategy of selecting a certain unit cell for the whole design. After that, the dimensions or orientations of this unit cell are changed to achieve the required phase shift at each position on the reflectarray surface. This strategy requires a 360° span of the phase characteristics of the selected unit cell versus a control parameter. In addition, it requires maximal linearity of the phase characteristics of the unit cell. This paper considers a different and more flexible strategy for the design of reflectarrays. This strategy is based on switching between unit cells to make use of the regions of the characteristic phase curves of best linearity for each unit cell. With this strategy, we can use unit cells with similar polarization, and unit cells that do not span 360° in phase characteristics in the design process of the same reflectarray. The single criterion for switching between unit cells is the maximal linearity of the phase characteristics of the unit cell at the required phase. This strategy guarantees maximization of the gain, and minimization of the side-lobe level (SLL) at the design frequency. The proposed strategy is validated for the design of a reflectarray antenna to work at 28 GHz using five different unit cells for possible 5G applications. The simulation results reveal the feasibility of the proposed strategy for achieving high gain and low SLL at 28 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berry, D. G., et al. (1963). The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 11, 645–651.

    Article  Google Scholar 

  2. Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. New York: IEEE Press.

    Google Scholar 

  3. Chang, D., & Huang, M. (1995). Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Transactions on Antennas and Propagation, 43(8), 829–834.

    Article  Google Scholar 

  4. Huang, J., et al. (1998). A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propagation, 46(5), 650–656.

    Article  Google Scholar 

  5. Chaharmir, M. R., et al. (2006). Broadband reflectarray antenna with double cross loops. Electronics Letters, 42(2), 65–66.

    Article  Google Scholar 

  6. Chaharmir, M. R., & Shaker, J. (2008). Broadband reflectarray antenna with combination of cross and rectangle loop elements. Electronic Letters, 44(11), 658–659.

    Article  Google Scholar 

  7. Chaharmir, M. R., et al. (2009). Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Transactions on Antennas and Propagation, 57(10), 3363–3366.

    Article  Google Scholar 

  8. Mohammadirad, M., Komjani, N., Chaharmir, M. R., Shaker, J., & Sebak, A. R. (2012). Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Letters, 11, 1104–1107.

    Article  Google Scholar 

  9. Vosoogh, A., et al. (2014). A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas and Wireless Propagation Letters, 13, 891–894.

    Article  Google Scholar 

  10. An, W., Xu, S., & Yang, F. (2014). A metal-only reflectarray antenna using slot-type elements. IEEE Antennas and Wireless Propagations Letters, 13, 1553.

    Article  Google Scholar 

  11. Zebrowski, M. (2012). Illumination and spillover efficiency calculations for rectangular reflectarray antennas. High Frequency Design, 1, 28–38.

    Google Scholar 

  12. Chaharmir, M. R., Shaker, J., Cuhaci, M., & Sebak, A. (2003). Reflectarray with variable slots on ground plane. IEE Proceedings on Microwaves, Antennas and Propagations, 150(6), 436–439.

    Article  Google Scholar 

  13. Derafshi, I., Komjani, N., & Mohammadirad, M. (2015). A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line. IEEE Antennas and Wireless Propagations Letters, 14, 84–87.

    Article  Google Scholar 

  14. Encinar, J. A. (2001). Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 49(10), 1403–1410.

    Article  MathSciNet  Google Scholar 

  15. Yu, A., Yang, F., Elsherbeni, A. Z., Huang, J., & Kim, Y. (2012). An offset-fed X-band reflectarray antenna using a modified element rotation technique. IEEE Transactions on Antennas and Propagation, 60(3), 1619–1624.

    Article  Google Scholar 

  16. Rajagopalan, H., Xu, S., & Rahmat-Samii, Y. (2012). On understand in the radiation mechanism of reflectarray antennas: An insightful and illustrative approach. IEEE Antennas and Propagation Magazine, 54(5), 14–38.

    Article  Google Scholar 

  17. Ramli, M., Misran, N., Mansor, M. F., Islam, M. T. (2014). Analysis of reflectarray unit cell with capacitive effect. In 2nd international conference on information and communication technology (ICOICT) (pp. 95–99).

  18. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken: Wiley.

    Google Scholar 

  19. CST-Computer Simulation Technology, Documentation. Available online: www.cst.com.

  20. Carrasco, E., Barba, M., & Encinar, J. A. (2007). Reflectarray element based on aperture—coupled patches with slots and lines of variable length. IEEE Transactions on Antennas and Propagation, 55(3), 820–825.

    Article  Google Scholar 

  21. Carrasco, E., Barba, M., & Encinar, J. A. (2006). Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters, 42(12), 667–668.

    Article  Google Scholar 

  22. Hasani, H., Kamyab, M., & Mirkamali, A. (2010). Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines. IEEE Antennas and Wireless Propagation Letters, 9, 156–158.

    Article  Google Scholar 

  23. Carrasco, E., Encinar, J. A., & Barba, M. (2008). Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Transactions on Antennas and Propagation, 56(8), 2496–2503.

    Article  Google Scholar 

  24. Han, C., Rodenbeck, C., Huang, J., & Chang, K. (2004). A C/Ka dual frequency dual layer circularly polarized reflectarray with microstrip ring elements. IEEE Transactions on Antennas and Propagation, 52(11), 2871–2876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Elsharkawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharkawy, R., Hindy, M., Sebak, AR. et al. Switching Between Unit Cells: A Tool to Break the Limits on the Performance of Reflectarray Antennas. Wireless Pers Commun 101, 1429–1443 (2018). https://doi.org/10.1007/s11277-018-5770-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5770-x

Keywords

Navigation