Skip to main content
Log in

Performance Analysis of Interference-Limited Mobile-to-Mobile κ–μ Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a wireless cooperative network, with two sections, operating over multipath mobile-to-mobile interference-limited fading channel is considered. The desired signal and the cochannel interference experience κμ short term fading. The source and destination mobile stations are connected by an amplify-and-forward relay mobile station. The destination station signal-to-interference ratio probability density function and the outage probability closed-form expressions are derived. The closed form approximate expressions for the average fade duration and the level crossing rate are also derived. The influence of the fading channel parameters on these statistical measures are studied. The Monte-Carlo simulations are used to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talha, B., & Pätzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. IEEE Vehicular Technology Magazine, 6(2), 33–43. https://doi.org/10.1109/MVT.2011.940793.

    Article  Google Scholar 

  2. Chakrabarti, A., Sabharwal, A., & Aazhang, B. (2006). Cooperative communications. In F. H. P. Fitzek & M. D. Katz (Eds.), Cooperation in wireless networks: Principles and applications: Real egoistic behavior is to cooperate! (pp. 29–68). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4711-8_2.

    Chapter  Google Scholar 

  3. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. https://doi.org/10.1109/TIT.2004.838089.

    Article  MathSciNet  MATH  Google Scholar 

  4. Valentin, S., Lichte, H. S., Karl, H., Vivier, G., Simoens, S., Vidal, J., et al. (2009). Cooperative wireless networking beyond store-and-forward. Wireless Personal Communications, 48(1), 49–68. https://doi.org/10.1007/s11277-007-9429-2.

    Article  Google Scholar 

  5. Wang, D., & Hao, L. (2013). Performance analysis for cooperative relay communication. Wireless Personal Communications, 71(3), 1619–1631. https://doi.org/10.1007/s11277-012-0895-9.

    Article  Google Scholar 

  6. Yacoub, M.D. (2001). The κ–μ distribution: A general fading distribution. In IEEE 54th vehicular technology conference. VTC fall 2001. Proceedings (Cat. No. 01CH37211) (Vol. 3, pp. 1427–1431). Doi:https://doi.org/10.1109/vtc.2001.956432.

  7. Yacoub, M. D. (2007). The κ–μ distribution and the η–μ distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81. https://doi.org/10.1109/MAP.2007.370983.

    Article  Google Scholar 

  8. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2016). Shadowed fading in indoor off-body communication channels: A statistical characterization using the κ–μ/gamma composite fading model. IEEE Transactions on Wireless Communications, 15(8), 5231–5244. https://doi.org/10.1109/TWC.2016.2555795.

    Article  Google Scholar 

  9. Bhargav, N., Cotton, S. L., & Smith, D. B. (2017). An experimental-based analysis of inter-BAN co-channel interference using the κ–μ fading model. IEEE Transactions on Antennas and Propagation, 65(2), 983–988. https://doi.org/10.1109/TAP.2016.2634521.

    Article  Google Scholar 

  10. Cotton, S. L. (2014). A statistical model for shadowed body-centric communications channels: Theory and validation. IEEE Transactions on Antennas and Propagation, 62(3), 1416–1424. https://doi.org/10.1109/TAP.2013.2295211.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cotton, S. L. (2015). Human body shadowing in cellular device-to-device communications: Channel modeling using the shadowed κ–μ fading model. IEEE Journal on Selected Areas in Communications, 33(1), 111–119. https://doi.org/10.1109/JSAC.2014.2369613.

    Article  Google Scholar 

  12. Parthasarathy, S., & Ganti, R. K. (2017). Coverage analysis in downlink poisson cellular network with κ–μ shadowed fading. IEEE Wireless Communications Letters, 6(1), 10–13. https://doi.org/10.1109/LWC.2016.2621762.

    Google Scholar 

  13. Bhargav, N., Cotton, S. L., & Simmons, D. E. (2016). Secrecy capacity analysis over κ–μ fading channels: Theory and applications. IEEE Transactions on Communications, 64(7), 3011–3024. https://doi.org/10.1109/TCOMM.2016.2565580.

    Article  Google Scholar 

  14. Zhang, J., Chen, X., Peppas, K. P., Li, X., & Liu, Y. (2017). On high-order capacity statistics of spectrum aggregation systems over κ–μ and κ–μ shadowed fading channels. IEEE Transactions on Communications, 65(2), 935–944. https://doi.org/10.1109/TCOMM.2016.2637926.

    Article  Google Scholar 

  15. Paris, J. F. (2014). Statistical characterization of κ–μ shadowed fading. IEEE Transactions on Vehicular Technology, 63(2), 518–526. https://doi.org/10.1109/TVT.2013.2281213.

    Article  Google Scholar 

  16. Bhatnagar, M. R. (2015). On the sum of correlated squared κ–μ shadowed random variables and its application to performance analysis of MRC. IEEE Transactions on Vehicular Technology, 64(6), 2678–2684. https://doi.org/10.1109/TVT.2014.2343453.

    Article  Google Scholar 

  17. Peppas, K. P. (2012). Sum of nonidentical squared κ–μ variates and applications in the performance analysis of diversity receivers. IEEE Transactions on Vehicular Technology, 61(1), 413–419. https://doi.org/10.1109/TVT.2011.2172963.

    Article  MathSciNet  Google Scholar 

  18. Bhargav, N., da Silva, C. R. N., Chun, Y. J., Cotton, S. L., & Yacoub, M. D. (2017). Co-channel interference and background noise in κ-μ fading channels. IEEE Communications Letters, 21(5), 1215–1218. https://doi.org/10.1109/LCOMM.2017.2664806.

    Article  Google Scholar 

  19. Kumar, P., & Dhaka, K. (2016). Performance analysis of a decode-and-forward relay system in κ–μ and η–μ fading channels. IEEE Transactions on Vehicular Technology, 65(4), 2768–2775. https://doi.org/10.1109/TVT.2015.2418211.

    Article  Google Scholar 

  20. Peppas, K. P., Alexandropoulos, G. C., & Mathiopoulos, P. T. (2013). Performance analysis of dual-hop AF relaying systems over mixed η–μ and κ–μ fading channels. IEEE Transactions on Vehicular Technology, 62(7), 3149–3163. https://doi.org/10.1109/TVT.2013.2251026.

    Article  Google Scholar 

  21. Panic, S., Milosevic, H., Stefanovic, C., & Milenkovic, V. (2017). SIR based SSC over correlated κ–μ fading channels. In 2017 13th international wireless communications and mobile computing conference (IWCMC) (pp. 582–586). doi:https://doi.org/10.1109/iwcmc.2017.7986350.

  22. Phan, V. V., Glisic, S. G., & Luong, D. D. (2004). Packet-length adaptive CLSP/DS-CDMA: performance in burst-error correlated fading channels. IEEE Transactions on Wireless Communications, 3(1), 147–158. https://doi.org/10.1109/TWC.2003.821191.

    Article  Google Scholar 

  23. Lai, J., & Mandayam, N. B. (1998). Packet error rate for burst-error-correcting codes in Rayleigh fading channels. In Vehicular technology conference, 1998. VTC 98. 48th IEEE (Vol. 2, pp. 1568–1572). doi:https://doi.org/10.1109/vetec.1998.686552.

  24. Cotton, S. L., & Scanlon, W. G. (2007). Higher-order statistics for κ–μ distribution. Electronics Letters, 43(22), 1. https://doi.org/10.1049/el:20072372.

    Article  Google Scholar 

  25. Cotton, S. L. (2016). Second-order statistics of κ–μ shadowed fading channels. IEEE Transactions on Vehicular Technology, 65(10), 8715–8720. https://doi.org/10.1109/TVT.2015.2506260.

    Article  Google Scholar 

  26. Bandjur, M., Radenković, D., Milenković, V., Suljević, S., & Djošić, D. (2014). Second order statistics of SC receiver over k–μ multipath fading channel. Serbian Journal of Electrical Engineering, 11(3), 391–401.

    Article  Google Scholar 

  27. Stefanovic, C., & Djosic, D. B. (2016). The LCR of wireless macrodiversity SSC receiver in the presence of gamma shadowed κ–μ fading. The University Thought-Publication in Natural Sciences, 6(2), 32–37.

    Article  Google Scholar 

  28. Stefanovic, M., Panic, S. R., Stefanovic, D., Nikolic, B., & Cvetkovic, A. (2012). Second order statistics of selection combining receiver over κ–μ fading channels subject to co-channel interferences. Radio Science, 47(6), 1–8. https://doi.org/10.1029/2012RS004997.

    Article  Google Scholar 

  29. Gradstein, E. S., & Ryzhik, I. M. (2007). Table of integrals, sums, series, and products. In A. Jeffrey & D. Zwillinger (Eds.) (7th ed.). San Diego, CA:Academic Press. Retrieved from http://www.sciencedirect.com/science/book/9780123736376.

  30. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  31. Jakes, W. (1993). Microwave mobile communications (2nd ed.). Piscataway, NJ: IEEE Press. https://doi.org/10.1109/9780470545287.ch1.

    Google Scholar 

  32. Yacoub, M. D., Bautista, J. E. V., de Rezende, Guerra, & Guedes, L. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794. https://doi.org/10.1109/25.764995.

    Article  Google Scholar 

  33. Wong, R. (2001). Asymptotic approximations of integrals. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

    Book  MATH  Google Scholar 

  34. Zheng, Y. R., & Xiao, C. (2003). Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Transactions on Communications, 51(6), 920–928. https://doi.org/10.1109/TCOMM.2003.813259.

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Ministry of Education, Science and Technological Development of Serbia within the projects “Development and implementation of next-generation systems, devices and software based on software radio for radio and radar networks” (TR-32051), and “Research and development of robust transmission systems for corporative networks” (TR-32037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Milosevic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milosevic, N., Stefanovic, M., Nikolic, Z. et al. Performance Analysis of Interference-Limited Mobile-to-Mobile κ–μ Fading Channel. Wireless Pers Commun 101, 1685–1701 (2018). https://doi.org/10.1007/s11277-018-5784-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5784-4

Keywords

Navigation