Skip to main content
Log in

Unsupervised Optimization for Universal Spatial Image Steganalysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Blind universal steganalysis has been the choice of Steganalysers owing to it’s capability to detect stego images without any prior information about the embedding method. Universal steganalysis is a two class optimization problem and the detecting efficiency depends on the feature set chosen from the stego and clean images. Though extracting all possible features of an image may lead to more efficiency the classification suffers due to large dimension of feature set. To overcome the problem of dimensionality appropriate feature reduction techniques need to be employed. This paper presents a blind universal image steganalysis technique that extracts the noise models of adjacent pixels of an image. The exact model construction involves the formation of four dimensional co-occurrence matrices of the quantised and truncated noise residues. From the 106 sub models 34,671 features have been extracted and further reduced by a novel unsupervised optimization technique to identify the most appropriate features for classification. The classifiers implemented include Support Vector Machines (SVM), Multi Layer Perceptron (MLP) and three fusion classifiers based on Bayes, Decision Template and Dempster Schafer fusion schemes. It has been identified that MLP performs better than SVM but is not superior to fusion classifiers. Comparing all the classifiers, Decision Template based fusion method gives the best classification accuracy (99.25%). Thus the proposed unsupervised optimization method combined with Decision Template fusion classification scheme provides the best classification of stego and clear images as compared to the existing research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cachin, C. (2004). An information-theoretic model for steganography. Information and Computation Elsevier, 192(1), 41–56.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pevny, T., Bas, P., & Fridrich, J. (2010). Steganalysis by subtractive pixel adjacency matrix. IEEE Transactions on Information Forensics and Security, 5(2), 215–224.

    Article  Google Scholar 

  3. Pevny, T., Filler, T., & Bas, P. (2010). Using high-dimensional image models to perform Highly undetectable steganography. International Workshop on Information Hiding, 6387, 161–177.

    Article  Google Scholar 

  4. Holub, V., Fridrich, J., & Denemark, T. (2014). Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security. http://jis.eurasipjournals.com/content/2014/1/1. Accessed December 25, 2016.

  5. Holub, V., & Fridrich, J. (2012). Designing steganographic distortion using directional filters. In Fourth IEEE international workshop on information forensics and security (pp. 234–239).

  6. Fridrich, J., & Kodovsky, J. (2011). Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 7(30), 868–882.

    Google Scholar 

  7. Filler, T., Judas, J., & Fridrich, J. (2011). Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Transactions on Information Forensics and Security, 6(3), 920–935.

    Article  Google Scholar 

  8. Goljan, M., Fridrich, J., Holotyak, Y. (2006). New blind steganalysis and its implications. In Electronic imaging (p. 607201-13).

  9. Zou, D., Shi, Y. Q., & Xuan, W. S. G. (2006). Steganalysis based on Markov model of thresholded prediction-error image. In Proceedings IEEE international conference on multimedia and expo (pp. 1365–1368).

  10. Ker, A. D., & Bohme, R. (2012). Revisiting weighted stego-image steganalysis. In Electronic imaging (p. 681905-17).

  11. Kodovsky, J., Fridrich, J., & Holub, V. (2012). Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security, 7(2), 432–444. https://doi.org/10.1109/tifs.2011.2175919.

    Article  Google Scholar 

  12. Holub, V., Fridrich, J., & Denemark, T. (2013). Random projections of residuals as an alternative to co-occurrences in steganalysis. IS&T/SPIE Electronic Imaging. https://doi.org/10.1117/12.1000330.

    Google Scholar 

  13. Du, K. L. (2010). Clustering—A neural network approach. Journal Neural Networks, 23(1), 89–107.

    Article  Google Scholar 

  14. Shi, Y. Q., Chen, C., & Chen, W. (2006). A Markov process based approach to effective attacking JPEG steganography. In: Proceedings of the 8th international workshop information hiding (pp. 249–264). Springer, Berlin.

  15. Lyu, S., & Farid, H. (2004). Steganalysis using color wavelet statistics and one-class vector support machines. Proceedings of SPIE Security Steganography Watermarking of Multimedia Contents, 5301, 35–45.

    Article  Google Scholar 

  16. Yu, H. F., Hsieh, C. J., Chang, K. W., & Lin, C. J. (2012). Large linear classification when data cannot fit in memory. ACM Transactions on Knowledge Discovery From Data, 5(4), 1–23. https://doi.org/10.1145/2086737.2086743.

    Article  Google Scholar 

  17. Sri Lalitha, Y., & Govardhan, A. (2015). Improved Text Clustering with Neighbours. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5(2), 23–37. https://doi.org/10.5121/ijdkp.2015.5203.

    Article  Google Scholar 

  18. Sheikhan, M., Moin, M. S., & Pezhmanpour, M. (2010). Blind image steganalysis via joint co-occurrence matrix and statistical moments of contourlet transform. In Intelligent systems design and applications (ISDA) (pp. 368–372).

  19. Avcibas, I., Kharrazib, M., Memon, N., & Sankurd, B. (2005). Image steganalysis with binary similarity measures. EURASIP JASP, 17, 2749–2757.

    MATH  Google Scholar 

  20. Pevny, T., & Fridrich, J. (2007). Merging Markov and DCT features for multi-class jpeg steganalysis. In IS and T/SPIE EI (Vol. 6505).

  21. Windeatt, T. (2006). Accuracy/diversity and ensemble MLP classifier design. IEEE Transactions on Neural Networks, 17(5), 1194–1211.

    Article  Google Scholar 

  22. Gader, P. D., Mohamed, M. A., & Keller, M. (1996). Fusion of handwritten word classifiers. Pattern Recognition Letters—Special Issue on Fuzzy Set Technology in Pattern Recognition, 17(6), 577–584. https://doi.org/10.1016/0167-8655(96)00021-9.

    Google Scholar 

  23. Kuncheva, L. I., Bezdek, J. C., & Duin, R. P. W. (2001). Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition, 34(2), 299–314.

    Article  MATH  Google Scholar 

  24. Bas, P., Filler, T., & Pevny, T. (2011). Break our steganographic system—The ins and outs of organizing BOSS. In Proceedings of information hiding conference (Vol. 6958, pp. 59–70).

  25. Kantarcioglu, M., Xi, B., & Clifton, C. (2011). Classifier evaluation and attribute selection against active adversaries. Data Mining and Knowledge Discovery—DATAMINE, 22(1–2), 291–335. https://doi.org/10.1007/s10618-010-0197-3.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fridrich, J., Kodovský, J., Goljan, M., & Holub, V. (2011). Steganalysis of content-adaptive steganography in spatial domain. In T. Filler, T. Pevný, A. Ker, & S. Craver (Eds.), Information Hiding, 13th International Workshop, volume 6958 of Lecture Notes in Computer Science (pp. 102–117). Prague, Czech Republic, May 18–20, 2011.

  27. Chonev, V. K., & Ker, A. D. (2011). Feature restoration and distortion metrics. In Multimedia Watermarking, Security and Forensics XIII, volume 7880 of Proc. SPIE, 2011 (pp. 0G01–0G14).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Christaline Johnvictor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 6 and 7.

Fig. 6
figure 6

Image features extracted

Fig. 7
figure 7

Image features extracted in .mat file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnvictor, A.C., Rangaswamy, R., Chidambaram, G. et al. Unsupervised Optimization for Universal Spatial Image Steganalysis. Wireless Pers Commun 102, 1–18 (2018). https://doi.org/10.1007/s11277-018-5790-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5790-6

Keywords

Navigation