Skip to main content
Log in

Frequency Tunable Graphene Metamaterial Reflectarray

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the radiation characteristics of frequency tunable graphene based metamaterial reflectarray have been investigated. The unit-cell consists of graphene two gaps split-ring-resonator (SRR) printed on a thick SiO2 substrate. The metamaterial parameters of the unit-cell have been calculated at different graphene chemical potentials and different SRR gaps. Using waveguide simulator, the reflection coefficient phase of the graphene metamaterial reflectarray unit-cell has been investigated. A 13 × 13 graphene metamaterial reflectarray antenna fed by a circular horn antenna is designed and analyzed at different graphene chemical potentials. Full-wave analysis for the graphene metamaterial reflectarray antenna has been applied using the finite integration technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 11, 107. https://doi.org/10.1063/1.3386413.

    Article  Google Scholar 

  2. Kadam, N. T., Janwalkar, K. S., & Odhekar, A. A. (2015). Parameter extraction for negative index metamaterials. In International conference on computer technology.

  3. Tao, H., Padilla, W. J., Zhang, X., & Averitt, R. D. (2011). Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE Journal on Selected Topics in Quantum Electronics, 17, 92–101. https://doi.org/10.1109/JSTQE.2010.2047847.

    Article  Google Scholar 

  4. Andryieuski, A., & Lavrinenko, A. V. (2013). Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Optics Express, 21, 9144–9155. https://doi.org/10.1364/OE.21.009144.

    Article  Google Scholar 

  5. Bao, W. (2012). Electrical and mechanical properties of graphene. Ph.D. Thesis, University of California, USA.

  6. Zainud-Deen, S. H., Malhat, H. A., Gaber, S. M., Ibrahim, M., & Awadalla, K. H. (2012). Plasma reflectarray. Plasmonics, 8, 1469–1475. https://doi.org/10.1007/s11468-013-9560-8.

    Article  Google Scholar 

  7. Shaker, J., Chaharmir, M. R., & Ethier, J. (2013). Reflectarray antennas. Artech House.

  8. Liu, L., & Hattori, H. T. (2015). Tunable terahertz metamaterials based on ultra-subwavelength graphene-dielectric structures. In 20th microoptics conference (MOC), Fukuoka (pp. 1–2). https://doi.org/10.1109/moc.2015.7416390.

  9. Rouhi, N., Capdevila, S., Jain, D., Zand, K., Wang, Y., Brown, E., et al. (2012). Terahertz graphene optics. Nano Research Journal, 5(10), 667–678. https://doi.org/10.1007/s12274-012-0251-0.

    Article  Google Scholar 

  10. Hanson, G. W. (2008). Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Transactions on Antennas and Propagation, 56(3), 747–757. https://doi.org/10.1109/TAP.2008.917005.

    Article  Google Scholar 

  11. Hassan, W. M. (2016). Analysis and design of high gain lens antennas. Ph.D. Thesis, Faculty of Electronic Engineering, Menoufia University, Egypt.

  12. Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 70, 016608-1–016608-7. https://doi.org/10.1103/physreve.70.016608.

    Article  Google Scholar 

  13. Malhat, H. A., Zainud-Deen, S. H., & Gaber, S. M. (2014). Graphene based transmitarray for terahertz applications. Progress in Electromagnetics Research M, 36, 185–191. https://doi.org/10.2528/pierm14050705.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Malhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Mabrouk, A.M. & Malhat, H.A. Frequency Tunable Graphene Metamaterial Reflectarray. Wireless Pers Commun 103, 1849–1857 (2018). https://doi.org/10.1007/s11277-018-5884-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5884-1

Keywords

Navigation