Skip to main content
Log in

Indoor Localization Using Multi-operator Public Land Mobile Networks and Support Vector Machine Learning Algorithms

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Given Public Land Mobile Networks (PLMN) ubiquitous infrastructure and excellent coverage, they can be used for providing location information for various location-based services, especially in indoor environments. This paper investigates indoor positioning solutions which utilize received signal strength measurements obtained by mobile device from PLMN cells belonging to multiple mobile network operators. Two indoor positioning methods, based on Support Vector Machine learning algorithms and space-partitioning principle, are proposed. The first method utilizes Support Vector Regression (SVR) algorithm, whilst the second one introduces space-partitioning principle and the combined use of Support Vector Classification and SVR algorithms. The proposed techniques are thoroughly investigated in a real indoor environment. In addition, several criteria for choosing relevant cells for the positioning purposes have been explored. Positioning with SVR has demonstrated good results, while utilizing space-partitioning principle has further reduced the average positioning error by 27%. Moreover, the proposed solution has outperformed positioning methods based on k Nearest Neighbours and Artificial Neural Networks, when implemented in the same verification test bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communication Surveys and Tutorials, 11(1), 13–32.

    Article  Google Scholar 

  2. Davidson, P., & Piché, R. (2017). A survey of selected indoor positioning methods for smartphones. IEEE Communication Surveys and Tutorials, 19(2), 1347–1370.

    Article  Google Scholar 

  3. Yassin, A., Nasser, Y., Awad, M., et al. (2017). Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Communication Surveys and Tutorials, 19(2), 1327–1346.

    Article  Google Scholar 

  4. He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communication Surveys and Tutorials, 18(1), 466–490.

    Article  Google Scholar 

  5. Lu, X., Zou, H., Zhou, H., Xie, L., & Huang, G. B. (2016). Robust extreme learning machine with its application to indoor positioning. IEEE Transaction on Cybernetics, 46(1), 194–205.

    Article  Google Scholar 

  6. Chen, Y., Guo, M., Shen, J., & Cao, J. (2017). GraphLoc: A graph-based method for indoor subarea localization with zero-configuration. Personal and Ubiquitous Computing, 21(3), 489–505.

    Article  Google Scholar 

  7. Li, C., Qiu, Z., & Liu, C. (2017). An improved weighted k-Nearest Neighbor algorithm for indoor positioning. Wireless Personal Communications, 96(2), 2239–2251.

    Article  Google Scholar 

  8. Torres-Sospedra, J., Moreira, A., Knauth, S., et al. (2017). Realistic evaluation of indoor positioning systems based on Wi-Fi fingerprinting: The 2015 EvAAL-ETRI competition. Journal of Ambient Intelligence and Smart Environments, 9, 263–279.

    Article  Google Scholar 

  9. Wirola, L., Laine, T. A., & Syrjärinne, J. (2010). Mass-market requirements for indoor positioning and indoor navigation. In Proceedings of international conference on indoor positioning and indoor navigation (IPIN) 2010. https://doi.org/10.1109/ipin.2010.5646748.

  10. Varshavsky, A., De Lara, E., Hightower, J., LaMarca, A., & Otsason, V. (2007). GSM indoor localization. Pervasive and Mobile Computing, 3(6), 698–720.

    Article  Google Scholar 

  11. Lakmali, B. D. S., & Dias, D. (2008). Database correlation for GSM location in outdoor & indoor environments. In Proceedings of international conference on information and automation for sustainability 2008 (pp. 42–47).

  12. Petric, M., Neskovic, A., & Neskovic, N. (2015). Dynamic k Nearest Neighbours model for mobile user indoor positioning. Proceedings of TELFOR, 2015, 165–168.

    Google Scholar 

  13. Machaj, J., Brida, P., & Benikovsky, J. (2014). Using GSM signals for fingerprint-based indoor positioning system. Proceedings of ELEKTRO, 2014, 64–67.

    Google Scholar 

  14. Machaj, J., & Brida, P. (2017). Impact of optimization algorithms on hybrid indoor positioning based on GSM and Wi-Fi signals. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.3911.

    Google Scholar 

  15. Stella, M., Russo, M., & Begusic, D. (2013). GSM-based approach for indoor localization. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 7, 374–378.

    Google Scholar 

  16. Ahriz, I., Oussar, Y., Denby, B., & Dreyfus, G. (2010). Full-band GSM fingerprints for indoor localization using a machine learning approach. International Journal of Navigation and Observation. https://doi.org/10.1155/2010/497829.

    Google Scholar 

  17. Oussar, Y., Ahriz, I., Denby, B., & Dreyfus, G. (2011). Indoor localization based on cellular telephony RSSI fingerprints containing very large numbers of carriers. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/1687-1499-2011-81.

    Google Scholar 

  18. Tian, Y., Denby, B., Ahriz, I., Roussel, P., & Dreyfus, G. (2015). Robust indoor localization and tracking using GSM fingerprints. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-015-0401-7.

    Google Scholar 

  19. Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.

    MATH  Google Scholar 

  20. Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  21. Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

    Article  Google Scholar 

  22. Petric, M., Neskovic, A., Neskovic, N., & Borenovic, M. (2014). SVM-based models for mobile users’ initial position determination. The Journal of Navigation, 67(6), 950–966.

    Article  Google Scholar 

  23. Zaidi, R. Z., & Mark, L. B. (2005). Real-time mobility tracking algorithms for cellular networks based on Kalman filtering. IEEE Transaction on Mobile Computing, 4(2), 195–208.

    Article  Google Scholar 

  24. Faragher, R. M., & Harle, R. K. (2015). Towards an efficient, intelligent, opportunistic smartphone indoor positioning system. Navigation, 62(1), 55–72.

    Article  Google Scholar 

  25. Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Journal on Artificial Intelligence, 97(1–2), 245–271.

    Article  MathSciNet  MATH  Google Scholar 

  26. 3GPP TS 45.008, release 14 (v14.1.0). Digital cellular telecommunications system (Phase 2+); GSM/EDGE Radio subsystem link control. (2017). https://www.etsi.org/deliver/etsi_ts/145000_145099/145008/14.01.00_60/ts_145008v140100p.pdf. Accessed 28 Sept 2018.

  27. Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transaction on Neural Networks, 13(2), 415–425.

    Article  Google Scholar 

  28. Rifkin, R., & Klautau, A. (2004). In defence of one-vs-all classification. Journal of Machine Learning Research, 5, 101–141.

    MATH  Google Scholar 

  29. Nicolas, P. R. (2014). Scala for machine learning. Birmingham: Packt Publishing.

    Google Scholar 

  30. Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transaction on Neural Networks, 10(5), 988–999.

    Article  Google Scholar 

  31. Wang, B., Chen, Q., Yang, L., & Chao, C. H. (2016). Indoor smartphone localization via fingerprint crowdsourcing: Challenges and approaches. IEEE Wireless Communications, 23(3), 82–90.

    Article  Google Scholar 

  32. Zhang, X., Wong, A. K. S., Lea, C. T., & Cheng, R. S. K. (2017). Unambiguous association of crowd-sourced radio maps to floor plans for indoor localization. IEEE Transaction on Mobile Computing, 17(2), 488–502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majda Petric.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petric, M., Neskovic, A., Neskovic, N. et al. Indoor Localization Using Multi-operator Public Land Mobile Networks and Support Vector Machine Learning Algorithms. Wireless Pers Commun 104, 1573–1597 (2019). https://doi.org/10.1007/s11277-018-6099-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6099-1

Keywords

Navigation