Skip to main content

Advertisement

Log in

Q-FRPML: QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN Based Low Power Lossy Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Considering the significance of mobile-Wireless Sensor Networks (WSNs) under Low Power Lossy Network (LLN) Conditions, in this paper a highly robust and QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN in LLN (Q-FRPML) has been proposed. Unlike classical routing approaches such as Routing Protocol for 6LowPAN based LLNs (RPL), our proposed Q-FRPML protocol contributes multiple novelties including received signal strength indicator (RSSI) based mobile node positioning for fault-resilient communication, proactive node management, RSSI and ETX objective functions based best parent node selection, link layer adaptive fault-resilient alternate path formation for QoS centric communication over mobile-WSNs. Q-FRPML protocol is implemented in parallel to the link layer of the classical RPL IEEE 802.15.4 protocol stack that once detecting any link-outage executes best parent node selection and alternate path formation to assure reliable data delivery. In this process, Q-FRPML avoids continuous network discovery that significantly reduces signaling overheads and energy consumption. Contiki-Cooja based simulation results have revealed that the proposed Q-FRPML protocol outperforms state-of-art native RPL or S-RPL protocol in terms of higher packet delivery ratio, lower packet loss ratio and end-to-end delay under varying network or load conditions. Though, Q-FRPML protocol has been applied in parallel to the native RPL, it preserves backward compatibility and hence can be applied in real-time mobile-WSN based QoS centric communication purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ehsan, S., & Hamdaoui, B. (2012). A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. In Communications surveys & tutorials, Second Quarter, vol. 14, no. 2 (pp. 265–278). IEEE.

  2. Spachos, P., Toumpakaris, D., & Hatzinakos, D. (2015). QoS and energy-aware dynamic routing in wireless multimedia sensor networks. In IEEE international conference on communications (ICC) (pp. 6935–6940).

  3. Sen, J., & Ukil, A. (2009). An adaptable and QoS-aware routing protocol for wireless sensor networks. In 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (pp. 767–771).

  4. Khanke, K., & Sarde, M. (2015). An energy efficient and QoS aware routing protocol for wireless sensor network. International Journal of Advanced Research in Computer and Communication Engineering, 4(7), 355–358.

    Google Scholar 

  5. Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., & Grassini, S. (2018). Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 67(5), 1214–1222.

    Article  Google Scholar 

  6. Ullo, S. et al. (2018). Application of wireless sensor networks to environmental monitoring for sustainable mobility. In 2018 IEEE International conference on environmental engineering (EE), Milan, Italy (pp. 1–7).

  7. Fallah, Y. P., Nasiopoulos, P., & Alnuweiri, H. (2008). Efficient transmission of H.264 video over multirate IEEE 802.11e WLANs. EURASIP Journa of Wireless Communications and Networking, 2008, 14.

    Google Scholar 

  8. Trapasiya, S. D., & Soni, H. B. (2017). Energy efficient policy selection in wireless sensor network using cross layer approach. In IET wireless sensor systems, vol. 7, no. 6 (pp. 191–197).

  9. He, W., Qiao, P. L., Zhou, Z. J., Hu, G. Y., Feng, Z. C., & Wei, H. (2018). A new belief-rule-based method for fault diagnosis of wireless sensor network. IEEE Access, 6, 9404–9419.

    Article  Google Scholar 

  10. Zhou, J., Zhang, Z., Tang, S., Huang, X., Mo, Y., & Du, D. Z. (2017). Fault-Tolerant virtual backbone in heterogeneous wireless sensor network. IEEE/ACM Transactions on Networking, 25(6), 3487–3499.

    Article  Google Scholar 

  11. Hu, S., & Li, G. (2018). Fault-tolerant clustering topology evolution mechanism of wireless sensor networks. IEEE Access, 6, 28085–28096.

    Article  Google Scholar 

  12. Kaur, T., & Kumar, D. (2018). Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sensors Journal, 18(11), 4614–4622.

    Article  Google Scholar 

  13. Cichoń, J., Gębala, M., & Zawada, M. (2017). Fault tolerant protocol for data collecting in wireless sensor networks. In 2017 IEEE symposium on computers and communications (ISCC), Heraklion (pp. 483–486).

  14. Ma, G., Yang, Y., Qiu, X., Gao, Z., & Li, H. (2017). Fault-tolerant topology control for heterogeneous wireless sensor networks using multi-routing tree. In 2017 IFIP/IEEE symposium on integrated network and service management (IM), Lisbon (pp. 620–623).

  15. Kaiwartya, O., et al. (2018). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580.

    Article  Google Scholar 

  16. Khoufi, I., Minet, P., & Laouiti, A. (2016). Fault-tolerant and constrained relay node placement in wireless sensor networks. In 2016 IEEE 13th international conference on mobile ad hoc and sensor systems (MASS), Brasilia (pp. 127–135).

  17. Ghabri, A., Horchani, L., & Bellalouna, M. (2016). New fault tolerant strategy of wireless sensor network. In 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), Okayama (pp. 1–6).

  18. Peng, H., et al. (2015). Energy-efficient and fault-tolerant evolution models for large-scale wireless sensor networks: A complex networks-based approach. In 2015 IEEE global communications conference (GLOBECOM), San Diego, CA (pp. 1–6).

  19. Nitesh, K., Azharuddin, M., & Jana, P. K. (2015). Energy efficient fault-tolerant clustering algorithm for wireless sensor networks. 2015 International conference on green computing and internet of things (ICGCIoT), Noida (pp. 234–239).

  20. Liu, X., Zhou, H., Xiong, S., Hou, K. M., Vaulx, C. D., & Shi, H. (2015). Development of a resource-efficient and fault-tolerant wireless sensor network system. In 2015 2nd International symposium on dependable computing and internet of things, Wuhan (pp. 122–127).

  21. Samanta, M., & Banerjee, I. (2014). Optimal load distribution of cluster head in fault-tolerant wireless sensor network. In 2014 IEEE students’ conference on electrical, electronics and computer science (SCEECS), Bhopal (pp. 1–7).

  22. Mugelan, R. K., Alsath, M. G. N., & Yokesh, V. (2011). Fault tolerant wireless sensor network for remote data acquisition. In 2011 International conference on electronics, communication and computing technologies, Pauls Nagar (pp. 69–72).

  23. Liu, C. T., Huo, H., Fang, T., & Li, D. R. (2009). Fault tolerant interval fusion for moving vehicle classification in wireless sensor networks. In IET international communication conference on wireless mobile and computing (CCWMC 2009), Shanghai, China (pp. 669–672).

  24. Bertier, M., Kermarrec, A. M., & Tan, G. (2010). Message-efficient byzantine fault-tolerant broadcast in a multi-hop wireless sensor network. In 2010 IEEE 30th international conference on distributed computing systems, Genoa, Italy (pp. 408–417).

  25. Vasseur, J. P. (2011). Terminology in low power and lossy networks, draftietf-roll-terminology. https://tools.ietf.org/search/draft-ietf-roll-terminology-06. Accessed 3 Nov 2017.

  26. Winter, T., Thubert, P., Brandt, A., Clausen, T., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., & Vasseur, J. (2012). RPL: IPv6 routing protocol for low power and lossy networks. https://tools.ietf.org/html/rfc6550. Accessed 3 Nov 2017.

  27. Lee, K. C., Sudhaakar, R., Ning, J., Dai, L., Addepalli, S., Vasseur, J. P., & Gerla, M. (2012). A comprehensive evaluation of RPL under mobility. Hindawi Publishing Corporation International Journal of Vehicular Technology, 2012.

  28. Vasseur, J., & Dunkels, A. (2010). Interconnecting smart objects with IP: The next internet (1st ed.). Burlington: Morgan Kaufmann.

    Google Scholar 

  29. Ouadjaout, A., Challal, Y., Lasla, N., & Bagaa, M. (2008). SEIF: Secure and efficient intrusion-fault tolerant routing protocol for wireless sensor networks. In 2008 Third international conference on availability, reliability and security, Barcelona (pp. 503–508).

  30. Nabizadeh, H., & Abbaspour, M. (2011). IFRP: An intrusion/fault tolerant routing protocol for increasing resiliency and reliability in wireless sensor networks. In 2011 International conference on selected topics in mobile and wireless networking (iCOST), Shanghai (pp. 24–29).

  31. Bellalouna, M., & Ghabri, A. (2013). A priori methods for fault tolerance in wireless sensor networks. In 2013 World congress on computer and information technology (WCCIT), Sousse (pp. 1–6).

  32. Lin, H. Y. (2009). Hypercube routing protocol with secure data transmission mechanisms in sensor networks using elliptic curve Diffie–Hellman key agreements. In 2009 International conference on new trends in information and service science, Beijing (pp. 1303–1308).

  33. Chuah, M., & Metgzer, R. (2008). Secure data retrieval system (SEDAR) for DTNs. In MILCOM 2008 - 2008 IEEE military communications conference, San Diego, CA (pp. 1–7).

  34. Chandra, M. L. R., & Reddy, P. C. S. (2016). Fault tolerance QoS routing protocol for MANETs. In 2016 IEEE 6th international conference on advanced computing (IACC), Bhimavaram (pp. 623–628).

  35. Kang, J., Sucec, J., Kaul, V., Samtani, S., & Fecko, M. A. (2009). Robust PIM-SM multicasting using anycast RP in wireless ad hoc networks. In 2009 IEEE international conference on communications, Dresden (pp. 1–6).

  36. Dhote, K., & Asutkar, G. M. (2017). Optimization of routing techniques in wireless sensor network using queue management. In 2017 IEEE devices for integrated circuit (DevIC), Kalyani (pp. 500–504).

  37. Subhashree, V. K., Tharini, C., & Swarna Lakshmi, M. (2014). Modified LEACH: A QoS-aware clustering algorithm for wireless sensor networks. In 2014 International conference on communication and network technologies, Sivakasi (pp. 119–123).

  38. Chand, M. S., & Kumar, B. (2016). A novel QoS—Aware improved-clustering-heuristic for wireless sensor networks. In 2016 3rd international conference on computing for sustainable global development (INDIACom), New Delhi (pp. 513–518).

  39. Deepa, C., & Latha, B. (2014). HHCS: Hybrid hierarchical cluster based secure routing protocol for wireless sensor networks. In International conference on information communication and embedded systems (ICICES2014), Chennai (pp. 1–6).

  40. Robinson, W. H., & Lauf, A. P. (2013). Resilient and efficient MANET aerial communications for search and rescue applications. In 2013 International conference on computing, networking and communications (ICNC), San Diego, CA (pp. 845–849).

  41. Oldewurtel, F., Ansari, J., & Mahonen, P. (2008). Cross-layer design for distributed source coding in wireless sensor networks. In Proceedings of SENSORCOM’ 08 (pp. 435–443).

  42. James, P. F., How, C., Bull, D., & Nix, A. (2008). Distortion-based link adaptation for wireless video transmission. EURASIP Journal of Advance Signal Processing, 2008, 17.

    MATH  Google Scholar 

  43. Amala Shiny, V. A., & Nagarajan, V. (2012). Energy efficient routing protocol for mobile wireless sensor network. International Journal of Computer Applications, 43(21), 1–5.

    Google Scholar 

  44. Shiang, H. P., & Var der Schaar, M. (2009). Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission. IEEE Transactions on Vehicular Technology, 58(2), 941–953.

    Article  Google Scholar 

  45. Jaradat, T., Benhaddou, D., Balakrishnan, M., & Al-Fuqaha, A. (2013). Energy efficient cross-layer routing protocol in wireless sensor networks based on fuzzy logic. In: 2013 9th International wireless communications and mobile computing conference (IWCMC), Sardinia (pp. 177–182).

  46. Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WMSN. IEEE Access, 4, 3182–3194.

    Article  Google Scholar 

  47. Yahya, B., & Ben-Othman, J. (2009). An energy efficient and QoS aware multipath2routing protocol for wireless sensor networks. In IEEE 34th conference local computer networks (pp. 93–100).

  48. Hong, K. S., & Choi, L. (2011). DAG-based multipath routing for mobile sensor networks. In 2011 International Conference on ICT Convergence (ICTC) (pp. 261–266).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Ganesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, D.R., Patil, K.K. & Suresh, L. Q-FRPML: QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN Based Low Power Lossy Networks. Wireless Pers Commun 105, 267–292 (2019). https://doi.org/10.1007/s11277-018-6112-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6112-8

Keywords

Navigation