Skip to main content
Log in

An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A simple metamaterial absorber with ultra-thin structure has been proposed for X-band applications with enhanced absorption bandwidth. The proposed structure comprises of circular rings embedded in L-shaped resonators. This ultra-thin structure (0.0420λ0 thick with respect to the center frequency of the operating bandwidth) exhibits wide absorption of 2.3 GHz above 90% absorptivity from 9.4 to 11.7 GHz. The designed structure was tested for different polarization for transverse electric mode under normal and oblique angles of electromagnetic wave incidence. It is polarization sensitive because of its asymmetrical design, and has diverse impacts on absorption at various incidence angles. The electromagnetic fields and surface current distributions were analysed to understand the high absorption of the presented metamaterial absorber. The proposed structure has been fabricated and the experimental responses were matched closely with the simulated responses. This metamaterial absorber will be suitable for applications like stealth technology in X-band frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184.

    Article  Google Scholar 

  2. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100, 207402.

    Article  Google Scholar 

  3. Bilotti, F., Nucci, L., & Vegni, L. (2006). An SRR based microwave absorber. Microwave and Optical Technology Letters, 48, 2171–2175.

    Article  Google Scholar 

  4. Li, L. W., Li, Y. N., Yeo, T. S., Mosig, J. R., & Martin, O. J. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 96, 164101.

    Article  Google Scholar 

  5. Arora, Chirag, Pattnaik, Shyam S., & Baral, R. N. (2017). Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique. International Journal of Electronics and Communications, 79, 124–131.

    Article  Google Scholar 

  6. Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. (2007). Optical cloaking with materials. Nature photonics, 1, 224–227.

    Article  Google Scholar 

  7. Li, H., Yuan, L. H., Zhou, B., Shen, X. P., Cheng, Q., & Cui, T. J. (2011). Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 110, 014909.

    Article  Google Scholar 

  8. Zhang, N., Zhou, P., Cheng, D., Weng, X., Xie, J., & Deng, L. (2013). Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 38, 1125–1127.

    Article  Google Scholar 

  9. Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express, 16, 7181–7188.

    Article  Google Scholar 

  10. Soheilifar, M. R., Sadeghzadeh, R. A., & Gobadi, H. (2014). Design and fabrication of a metamaterial absorber in the microwave range. Microwave and Optical Technology Letters, 56, 1748–1752.

    Article  Google Scholar 

  11. Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., & Lu, W. (2013). A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 45, 747–753.

    Article  Google Scholar 

  12. Ramya, S., & Rao, I. S. (2016). Design of polarization-insensitive dual band metamaterial absorber. Progress In Electromagnetics Research M, 50, 23–31.

    Article  Google Scholar 

  13. Yoo, Y. J., Kim, Y. J., Hwang, J. S., Rhee, J. Y., Kim, K. W., Kim, Y. H., et al. (2015). Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, 106, 071105.

    Article  Google Scholar 

  14. Bhattacharya, A., Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Vaibhav Srivastava, K. (2015). An ultrathin penta-band polarization-insensitive compact metamaterial absorber for airborne radar applications. Microwave and Optical Technology Letters, 57, 2519–2524.

    Article  Google Scholar 

  15. Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 47, 8–9.

    Article  Google Scholar 

  16. Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Srivastava, K. V. (2015). Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Applied Physics A, 118, 207–215.

    Article  Google Scholar 

  17. Li, L., Wang, J., Du, H., Wang, J., Qu, S., & Xu, Z. (2015). A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 5, 017147.

    Article  Google Scholar 

  18. Sood, D., & Tripathi, C. C. (2016). A wideband wide-angle ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 58, 1131–1135.

    Article  Google Scholar 

  19. Ramya, S., & Srinivasa Rao, I. (2017). A compact ultra-thin ultrawideband microwave metamaterial absorber. Microwave and Optical Technology Letters, 59, 1837–1845.

    Article  Google Scholar 

  20. Zhou, W., Wang, P., Wang, N., Jiang, W., Dong, X., & Hu, S. (2015). Microwave metamaterial absorber based on multiple square ring structures. AIP Advances, 5, 117109.

    Article  Google Scholar 

  21. Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Wide-angle quad-band polarisation-insensitive metamaterial absorber. Electronics Lett, 52, 340–342.

    Article  Google Scholar 

  22. Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115, 104503.

    Article  Google Scholar 

  23. Zhai, H., Zhan, C., Li, Z., & Liang, C. (2015). A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 14, 241–244.

    Article  Google Scholar 

  24. Sood, D., & Tripathi, C. C. (2015). A wideband ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 57, 2723–2728.

    Article  Google Scholar 

  25. Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber. Applied Physics A, 122, 1–9.

    Google Scholar 

  26. Sood, D., & Tripathi, C. C. (2016). Broadband ultrathin low-profile metamaterial microwave absorber. Applied Physics A, 122, 1–7.

    Article  Google Scholar 

  27. Sood, D., & Tripathi, C. C. (2017). A compact ultrathin ultra-wideband metamaterial microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16, 514–528.

    Article  Google Scholar 

  28. Xu, G., Huang, J., Ju, Z., Wei, Z., Li, J., & Zhao, Q. (2017). A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators. Progress In Electromagnetics Research C, 77, 133–144.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. P. Mohanan, Department of Electronics, Cochin University of Science and Technology for the laboratory facility to perform the experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, S., Srinivasa Rao, I. An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications. Wireless Pers Commun 105, 1617–1627 (2019). https://doi.org/10.1007/s11277-019-06163-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06163-x

Keywords

Navigation