Skip to main content
Log in

Long-Reach High-Capacity Hybrid MDM-OFDM-FSO Transmission Link Under the Effect of Atmospheric Turbulence

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing (OFDM) based free space optics (FSO) link is a promising technology for future wireless data transmission networks. In this paper, we report designing and performance analysis of hybrid OFDM-FSO link for the transmission of 4 independent channels each having a data rate of 20 Gb/s incorporating Mode division multiplexing of distinct Hermite Gaussian modes (HG00, HG01, HG02, and HG03) over a link distance of 10 km to 50 km under clear weather conditions. The performance of the proposed link is also evaluated under the effect of atmospheric turbulence and beam divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys and Tutorials, 16(4), 2231–2258.

    Article  Google Scholar 

  2. Mahdy, A., & Deogun, J. S. (2004). Wireless optical communications: A survey. Proceedings of IEEE Wireless Communications and Networking Conference, 4, 2399–2404.

    Google Scholar 

  3. G. Nykolak, P.F. Szajowski, G. Tourgee and H. Presby. (1999). 2.5Gbit/s Free Space Optical Link over 4.4 km. Electronic Letters, 35(7). 578-579.

  4. Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q. (2012). Evaluation of a 1 Gb/s free space optic system in typical Malaysian weather. In Proceedings of IEEE 3rd International Conference on Photonics, (pp. 121-124), IEEE-Malaysia.

  5. Ramezani, A., Noroozi, M. R., & Aghababaee, M. (2014). Analyzing free space optical communication performance. International Journal of Engineering and Advanced Technology, 4(1), 46–51.

    Google Scholar 

  6. Singh, Jitendra, & Kumar, Naresh. (2013). Performance analysis of different modulation format on free space optical communication system. Optik—International Journal of Light and Electron Optics, 124(20), 4651–4654.

    Article  Google Scholar 

  7. Attri, S., Narula, C., Kumar, S. (2017). Performance analysis of FSO Link using CO-OFDM under the effect of atmospheric turbulence. In Proceedings of International conference on Intelligent Communication, Control, Devices, (pp. 167-172). Springer-Singapore.

  8. Sharma, V., & Kaur, G. (2013). High speed long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik, 124(23), 6111–6114.

    Article  Google Scholar 

  9. Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik, 125(18), 5196–5198.

    Article  Google Scholar 

  10. Kumar, N., Sharma, A. K., & Kapoor, V. (2014). Performance investigations on WDM based OFDM-RoF transmission links. Journal of Optical Communication, 35(2), 151–156.

    Article  Google Scholar 

  11. Randel, S., Ryf, R., Sierra, A., Winzer, P. J., Gnauck, A. H., Bolle, C. A., Essiambre, R. J. et. al. (2011). Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing. Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC).

  12. Amphawan, A., Dominic, O. (2010). Modal decomposition of output field for holographic mode field generation in a multimode fiber channel. Proceedings of International Conference Photonics (ICP), IEEE, Langkawi, Malaysia.

  13. Amphawan, A., Mishrab, V., Nisaran, K., & Nedniyomc, B. (2012). Realtime holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. Journal of Modern Optics, 59, 1745–1752.

    Article  Google Scholar 

  14. Amphawan, A. (2011). Binary encoded computer generated holograms for temporal phase shifting. Optics Express, 19, 23085–23096.

    Article  Google Scholar 

  15. Amphawan, A. (2012). Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber. Journal of Modern Optics, 59, 460–469.

    Article  Google Scholar 

  16. Jung, Y., Chen, R., Ismaeel, R., Brambilla, G., Alam, S. U., Giles, I. P., et al. (2013). Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Optics Express, 21, 24326–24331.

    Article  Google Scholar 

  17. Amphawan, A., Benjaporn, N., & Nashwan, M. A. S. (2014). Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. Journal of Modern Optics, 60(20), 1675–1683.

    Article  Google Scholar 

  18. Huang, H., et al. (2014). 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 39, 197–200.

    Article  Google Scholar 

  19. Ren, Y., et al. (2015). 400-Gbit/s free space optical communications link over 120-meter using multiplexing of 4 collocated orbital angular- momentum beams. In Optical Fiber Communication Conference, (pp. M2F. 1). Optical Society of America.

  20. Zhao, Y., et al. (2016). Experimental Demonstration of 260-meter Security Free-Space Optical Data Transmission Using 16-QAM Carrying Orbital Angular Momentum (OAM) Beams Multiplexing. In Optical Fiber Communication Conference, (pp. Th1H. 3). Optical Society of America.

  21. Trichili, A., et al. (2016). Optical communication beyond orbital angular momentum. Scientific Reports, 6, 27674–27683.

    Article  Google Scholar 

  22. Amphawan, A., et al. (2015) Free-space optical mode division multiplexing for switching between millimeter-wave picocells. In International Conference on Optical and Photonic Engineering (icOPEN2015), (pp. 95242H-95242H-95246). International Society for Optics and Photonics.

  23. Chaudhary, S., & Amphawan, A. (2018). High speed MDM-Ro-FSO communication system by incorporating AMI scheme. International Journal of Electronics Letters. https://doi.org/10.1080/21681724.2018.1494318.

    Google Scholar 

  24. Chaudhary, Sushank, & Amphawan, Angela. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications, 36(2), 263–271.

    Article  Google Scholar 

  25. Chaudhary, Sushank, & Amphawan, Angela. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics, 28, 1–9.

    Google Scholar 

  26. Muniz, A. L. M., et al. (2016). Ultra-broadband photonics-based RF front-end toward 5G networks. IEEE/OSA Journal of Optical Communications and Networking, 8, B35–B42.

    Article  Google Scholar 

  27. Abadi, M. M., et al. (2016). Dual Purpose Antenna for Hybrid Free Space Optics/RF Communication Systems. Journal of Lightwave Technology, 34, 3432–3439.

    Article  Google Scholar 

  28. Feng, J., et al. (2016). Performance analysis of mixed RF/FSO systems with STBC users. Optics Communications, 381, 244–252.

    Article  Google Scholar 

  29. Djordjevic, G.T., et al. (2016) BER analysis of WiMAX on FSO. In 18th International Conference on Transparent Optical Networks (ICTON), (pp. 1–6).

  30. Amphawan, A., et al. (2015) Free-space optical mode division multiplexing for switching between millimeter-wave picocells. In Proceedings of SPIE, (pp. 95242H-95242H-95246).

  31. Wang, Y., et al. (2016). Fuzzy logic based dynamic handover scheme for indoor Li-Fi and RF hybrid network. In IEEE International Conference on Communications (ICC), (pp. 1–6).

  32. Wang, F., et al. (2015). Efficient vertical handover scheme for heterogeneous VLC-RF systems. IEEE/OSA Journal of Optical Communications and Networking, 7, 1172–1180.

    Article  Google Scholar 

  33. Trinh, P.V., et al. (2016). Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors. In IEEE Photonics Journal, (pp. 1–10).

  34. Soleimani-Nasab, E., et al. (2016). Generalized performance analysis of mixed RF/FSO cooperative systems. IEEE Transactions on Wireless Communications, 15, 714–727.

    Article  Google Scholar 

  35. Petkovic, M. I., et al. (2016). Mixed RF/FSO relaying systems. In M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, & E. Udvary (Eds.), Optical wireless communications: An emerging technology (pp. 387–407). Berlin: Springer.

    Chapter  Google Scholar 

  36. AlQuwaiee, H., et al. (2016). On the maximum and minimum of double generalized Gamma variates with applications to the performance of free-space optical communication systems. IEEE Transactions on Vehicular Technology, 65, 8822–8831.

    Article  Google Scholar 

  37. Yang, L., et al. (2015). Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels. IEEE Journal on Selected Areas in Communications, 33, 1913–1924.

    Article  Google Scholar 

  38. Amphawan, A., et al. (2015). 5Gbps HG 0,1 and HG 0,3 optical mode division multiplexing for RoFSO. In IEEE International Colloquium Signal Processing and its Applications (CSPA), IEEE, Kuala Lumpur.

  39. Amphawan, A., et al. (2014). 2 × 20 Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. Journal of the European Optical Society-Rapid publications, 9, 1–6.

    Article  Google Scholar 

  40. Amphawan, A., et al. (2015). Mode division multiplexing of LG and HG modes in Ro-FSO. In Proceedings of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2015), Palembang, Indonesia, (pp. 133–137).

  41. Ghatak, A., & Thyagarajan, K. (1998). An introduction to Fiber Optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  42. Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laser wireless links. Journal of Lightwave Technology, 30, 2735–3727.

    Article  Google Scholar 

  43. Sarangal, H., Singh, A., Malhotra, J., & Chaudhary, S. (2017). A cost effective 100 Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Optical and Quantum Electronics, 49, 184–193.

    Article  Google Scholar 

  44. Pan, L., Ding, C., & Wang, H. (2014). Diffraction of cosine-Gaussian correlated Schell-model beams. Optics Express, 22, 11670–11679.

    Article  Google Scholar 

  45. Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media (2nd ed.). Bellingham: SPIE Press Book.

    Book  Google Scholar 

  46. Kim, I., Mcarthur, B., & Korevaar, E. (2006). Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for optical wireless communications. Proceedings of SPIE optical wireless communication, 6303, 26–37.

    Google Scholar 

  47. Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission, and detection. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Malhotra, J. Long-Reach High-Capacity Hybrid MDM-OFDM-FSO Transmission Link Under the Effect of Atmospheric Turbulence. Wireless Pers Commun 107, 1549–1571 (2019). https://doi.org/10.1007/s11277-019-06345-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06345-7

Keywords

Navigation