Skip to main content
Log in

Medical Image Encryption Based on Hybrid Chaotic DNA Diffusion

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We explore the use of two chaotic systems (Bernoulli shift map and Zizag map) coupled with deoxyribonucleic acid coding in an encryption scheme for medical images in this paper. The scheme consists of two main phases: Chaotic key generation and DNA diffusion. Firstly, the message digest algorithm 5 hash function is performed on the plain medical image and the hash value used in combination with the value of an input ASCII string to generate initial conditions and control parameters for two chaotic systems (Bernoulli shift map and Zigzag map). These chaotic systems are subsequently used to produce two separate key matrices. Secondly, a row-by-row diffusion operation between the plain image matrix and the two chaotic key matrices, using the DNA XOR algebraic operation is performed in an alternating pattern to produce the cipher image. The logistic map is used to select the DNA encoding and decoding rules for each row. Experimental results of statistical, differential and key analyses demonstrate that the proposed scheme is robust and provides resistance to various forms of attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Husainy, M. A. F. (2012). A novel encryption method for image security. International Journal of Security and Its Applications, 6(1), 1–8.

    Google Scholar 

  2. Alvarez, G., & Li, S. (2006). Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16(08), 2129–2151.

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrecut, M. (1998). Logistic map as a random number generator. International Journal of Modern Physics B, 12(09), 921–930.

    Article  MathSciNet  MATH  Google Scholar 

  4. Belazi, A., El-Latif, A. A. A., & Belghith, S. (2016). A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing, 128, 155–170.

    Article  Google Scholar 

  5. Chai, X., Chen, Y., & Broyde, L. (2017). A novel chaos-based image encryption algorithm using DNA sequence operations. Optics and Lasers in Engineering, 88, 197–213.

    Article  Google Scholar 

  6. Chakraborty, S., Seal, A., Roy, M., & Mali, K. (2016). A novel lossless image encryption method using dna substitution and chaotic logistic map. International Journal of Security and Its Applications, 10(2), 205–216.

    Article  Google Scholar 

  7. Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos, Solitons & Fractals, 21(3), 749–761.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dridi, M., Hajjaji, M. A., Bouallegue, B., & Mtibaa, A. (2016). Cryptography of medical images based on a combination between chaotic and neural network. IET Image Processing, 10(11), 830–839.

    Article  Google Scholar 

  9. El-Alfy, E. S. M., Thampi, S. M., Takagi, H., Piramuthu, S., & Hanne, T. (2015). Advances in Intelligent Informatics. Berlin: Springer.

    Book  Google Scholar 

  10. Enayatifar, R., Abdullah, A. H., & Isnin, I. F. (2014). Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Optics and Lasers in Engineering, 56, 83–93.

    Article  Google Scholar 

  11. Enayatifar, R., Abdullah, A. H., & Lee, M. (2013). A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption. Optics and Lasers in Engineering, 51(9), 1066–1077.

    Article  Google Scholar 

  12. Enayatifar, R., Sadaei, H. J., Abdullah, A. H., Lee, M., & Isnin, I. F. (2015). A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata. Optics and Lasers in Engineering, 71, 33–41.

    Article  Google Scholar 

  13. de la Fraga, L. G., Torres-Pérez, E., Tlelo-Cuautle, E., & Mancillas-López, C. (2017). Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dynamics, 90(3), 1661–1670.

    Article  Google Scholar 

  14. Gao, H., Zhang, Y., Liang, S., & Li, D. (2006). A new chaotic algorithm for image encryption. Chaos, Solitons & Fractals, 29(2), 393–399.

    Article  MATH  Google Scholar 

  15. Guesmi, R., Farah, M., Kachouri, A., & Samet, M. (2016). A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dynamics, 83(3), 1123–1136.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hermassi, H., Belazi, A., Rhouma, R., & Belghith, S. M. (2014). Security analysis of an image encryption algorithm based on a DNA addition combining with chaotic maps. Multimedia tools and applications, 72(3), 2211–2224.

    Article  MATH  Google Scholar 

  17. Huang, X., & Ye, G. (2014). An image encryption algorithm based on hyper-chaos and DNA sequence. Multimedia tools and applications, 72(1), 57–70.

    Article  Google Scholar 

  18. Liu, Y., Tang, J., & Xie, T. (2014). Cryptanalyzing a RGB image encryption algorithm based on DNA encoding and chaos map. Optics & Laser Technology, 60, 111–115.

    Article  Google Scholar 

  19. Maheshkar, S., et al. (2017). Region-based hybrid medical image watermarking for secure telemedicine applications. Multimedia Tools and Applications, 76(3), 3617–3647.

    Article  Google Scholar 

  20. Mao, Y., Chen, G. (2005) Chaos-based image encryption. In Handbook of Geometric Computing. Springer, Berlin, Heidelberg

  21. Murillo-Escobar, M., Cruz-Hernández, C., Cardoza-Avendaño, L., & Méndez-Ramírez, R. (2017). A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dynamics, 87(1), 407–425.

    Article  MathSciNet  Google Scholar 

  22. Norouzi, B., Mirzakuchaki, S., & Norouzi, P. (2017). Breaking an image encryption technique based on neural chaotic generator. Optik-International Journal for Light and Electron Optics, 140, 946–952.

    Article  Google Scholar 

  23. Parvees, M. M., Samath, J. A., & Bose, B. P. (2016). Secured medical images-a chaotic pixel scrambling approach. Journal of medical systems, 40(11), 232.

    Article  Google Scholar 

  24. Parvin, Z., Seyedarabi, H., & Shamsi, M. (2016). A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimedia Tools and Applications, 75(17), 10631–10648.

    Article  Google Scholar 

  25. Phatak, S., & Rao, S. S. (1995). Logistic map: A possible random-number generator. Physical review E, 51(4), 3670.

    Article  Google Scholar 

  26. Praveenkumar, P., Devi, N. K., Ravichandran, D., Avila, J., Thenmozhi, K., Rayappan, J. B. B., et al. (2017). Transreceiving of encrypted medical image: A cognitive approach. Multimedia Tools and Applications, 77(7), 8393–8418.

    Article  Google Scholar 

  27. Ravichandran, D., Praveenkumar, P., Rayappan, J. B. B., & Amirtharajan, R. (2016). Chaos based crossover and mutation for securing DICOM image. Computers in Biology and Medicine, 72, 170–184.

    Article  Google Scholar 

  28. ur Rehman, A., Liao, X., Kulsoom, A., & Abbas, S. A. (2015). Selective encryption for gray images based on chaos and DNA complementary rules. Multimedia Tools and Applications, 74(13), 4655–4677.

    Article  Google Scholar 

  29. Sankpal, P.R., & Vijaya, P. (2014). Image encryption using chaotic maps: A survey. In 2014 Fifth International Conference on Signal and Image Processing (ICSIP) (pp. 102–107). IEEE

  30. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, H., Ye, J. M., Liang, H. F., & Miao, Z. H. (2017). A medical image encryption algorithm based on synchronization of time-delay chaotic system. Advances in Manufacturing, 5(2), 158–164.

    Article  Google Scholar 

  32. Wang, X., & Liu, C. (2017). A novel and effective image encryption algorithm based on chaos and DNA encoding. Multimedia Tools and Applications, 76(5), 6229–6245.

    Article  Google Scholar 

  33. Wang, X. Y., Yang, L., Liu, R., & Kadir, A. (2010). A chaotic image encryption algorithm based on perceptron model. Nonlinear Dynamics, 62(3), 615–621.

    Article  MathSciNet  MATH  Google Scholar 

  34. Watson, J. D., & Crick, F. (1974). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 248(5451), 765.

    Article  Google Scholar 

  35. American National Standards Institute/Institute of Electrical and Electronics Engineers (1985). IEEE standard for binary floating-point arithmetic. In ANSI/IEEE Std 754–1985 (pp. 754–1985). New York

  36. Zhan, K., Wei, D., Shi, J., & Yu, J. (2017). Cross-utilizing hyperchaotic and DNA sequences for image encryption. Journal of Electronic Imaging, 26(1), 013,021–013,021.

    Article  Google Scholar 

  37. Zhang, Q., Guo, L., & Wei, X. (2010). Image encryption using DNA addition combining with chaotic maps. Mathematical and Computer Modelling, 52(11), 2028–2035.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X., Wang, H., & Xu, C. (2019). Identity-based key-exposure resilient cloud storage public auditing scheme from lattices. Information Sciences, 472, 223–234.

    Article  Google Scholar 

  39. Zhang, X., & Xu, C. (2018). Trapdoor security lattice-based public-key searchable encryption with a designated cloud server. Wireless Personal Communications, 100(3), 907–921.

    Article  Google Scholar 

  40. Zhang, X., Xu, C., Mu, L., & Zhao, J. (2018). Identity-based encryption with keyword search from lattice assumption. China Communications, 15(4), 164–178.

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Grant No. 61370073), the National High Technology Research and Development Program of China (Grant No. 2007AA01Z423), the project of Science and Technology Department of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua C. Dagadu.

Ethics declarations

Conflicts of Interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagadu, J.C., Li, JP. & Aboagye, E.O. Medical Image Encryption Based on Hybrid Chaotic DNA Diffusion. Wireless Pers Commun 108, 591–612 (2019). https://doi.org/10.1007/s11277-019-06420-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06420-z

Keywords

Navigation