Skip to main content
Log in

Individual and Mutual Feature Processed ELM Model for EEG Signal Based Brain Activity Classification

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

BCI deals to map the brain signal or activity to evaluate the human behaviour, activities or disease. The aim of this research is to utilize the different features of EEG signal to recognize the brain activity. The composite feature model with ELM classification method is presented in this research to recognize the human activity. In this paper, multiple aspects including time domain, frequency domain and least square evaluation based features are processed under ELM classifier to recognize the human-activities. Multiple quantified features are generated under each time, frequency and the least square categories. These features are processed individually and mutually with probabilistic evaluation to expand the processing-featureset. This expanded-composite featureset is trained under ELM (Extreme Learning Machine) classifier to perform intra-class and inter-class classification. The experimentation is applied on five distinctive experiments of Dataset IIIa of BCI completion III. Each experiment is conducted with variant training and testing instances. The evaluation results identified that the proposed hybrid model has achieved the average accuracy over 80%. Comparative results are generated against ANN, SVM, KNN and Multiscale Wavelet Kernel ELM by utilizing each kind of individual and mutual feature. The results taken from various experimentations have validated that the proposed model has improved the accuracy against each of the existing feature processed classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S. L., Kadry, S., et al. (2017). Classification of focal and non focal EEG using entropies. Pattern Recognition Letters, 94, 112–117.

    Article  Google Scholar 

  2. Tang, Z., Li, C., & Sun, S. (2017). Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik - International Journal for Light and Electron Optics, 130, 11–18.

    Article  Google Scholar 

  3. Wenting, T., & Sun, S. (2012). A subject transfer framework for EEG classification. Neurocomputing, 82, 109–116.

    Article  Google Scholar 

  4. Samiee, K., Kiranyaz, S., Gabbouj, M., & Saramäki, T. (2015). Long-term epileptic EEG classification via 2D mapping and textural features. Expert Systems with Applications, 42(20), 7175–7185.

    Article  Google Scholar 

  5. Cuesta-Frau, D., Pau, M.-M., Nunez, J. J., Sandra, O.-C., & Pico, A. M. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using fi rst and second generation statistics. Computers in Biology and Medicine, 87, 141–151.

    Article  Google Scholar 

  6. Kocadagli, O., & Langari, R. (2017). Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations. Expert Systems with Applications, 88, 419–434.

    Article  Google Scholar 

  7. Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2017). ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egyptian Informatics Journal, 18(1), 55–66.

    Article  Google Scholar 

  8. Sunil Kumar, T., Kanhangad, T. S., & Pachori, R. B. (2015). Classification of seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal Processing and Control, 15, 33–40.

    Article  Google Scholar 

  9. Martín-Smith, P., Ortega, J., Asensio-Cubero, J., Gan, J. Q., & Ortiz, A. (2017). A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI. Neurocomputing, 250, 45–56.

    Article  Google Scholar 

  10. Sturm, I., Lapuschkin, S., Samek, W., & Müller, K.-R. (2016). Interpretable deep neural networks for single-trial EEG classification. Journal of Neuroscience Methods, 274, 141–145.

    Article  Google Scholar 

  11. Aliakbaryhosseinabadi, S., Kamavuako, E. N., Jiang, N., Farina, D., & Mrachacz-Kersting, N. (2017). Classification of EEG signals to identify variations in attention during motor task execution. Journal of Neuroscience Methods, 284, 27–34.

    Article  Google Scholar 

  12. Hari Krishna, D., Pasha, I. A., & Satya Savithri, T. (2016). Classification of EEG motor imagery multi class signals based on cross correlation. Procedia Computer Science, 85, 490–495.

    Article  Google Scholar 

  13. Mirvaziri, H., & Mobarakeh, Z. S. (2017). Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization. Biomedical Signal Processing and Control, 32, 69–75.

    Article  Google Scholar 

  14. Ma, Z., Tan, Z.-H., & Guo, J. (2016). Feature selection for neutral vector in EEG signal classification. Neurocomputing, 174, 937–945.

    Article  Google Scholar 

  15. Jaiswal, A. K., & Banka, H. (2017). Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomedical Signal Processing and Control, 34, 81–92.

    Article  Google Scholar 

  16. Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2017). EEG signal classification using PSO trained RBF neural network for epilepsy identification. Informatics in Medicine Unlocked, 6, 1–11.

    Article  Google Scholar 

  17. Bhati, D., Sharma, M., Pachori, R. B., & Gadre, V. M. (2017). Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digital Signal Processing, 62, 259–273.

    Article  Google Scholar 

  18. Ameri, R., Pouyan, A., & Abolghasemi, V. (2016). Projective dictionary pair learning for EEG signal classification in brain computer interface applications. Neurocomputing, 218, 382–389.

    Article  Google Scholar 

  19. Siuly, Y. L. (2014). A novel statistical algorithm for multiclass EEG signal classification. Engineering Applications of Artificial Intelligence, 34, 154–167.

    Article  Google Scholar 

  20. Lahiri, R., Rakshit, P., & Konar, A. (2017). Evolutionary perspective for optimal selection of EEG electrodes and features. Biomedical Signal Processing and Control, 36, 113–137.

    Article  Google Scholar 

  21. Kang, H., & Choi, S. (2014). Bayesian common spatial patterns for multi-subject EEG classification. Neural Networks, 57, 39–50.

    Article  MATH  Google Scholar 

  22. Uehara, T., Sartori, M., Tanaka, T., & Fiori, S. (2017). Robust averaging of covariances for EEG recordings classification in motor imagery brain–computer interfaces. Neural Computation, 29(6), 1631–1666.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2016). Sparse Bayesian classification of EEG for brain–computer interface. IEEE Transactions on Neural Networks and Learning Systems, 27(11), 2256–2267.

    Article  MathSciNet  Google Scholar 

  24. He, L., Hu, D., Wan, M., Wen, Y., von Deneen, K. M., & Zhou, M. (2016). Common Bayesian network for classification of EEG-based multiclass motor imagery BCI. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(6), 843–854.

    Article  Google Scholar 

  25. Qi, F., Li, Y., & Wu, W. (2015). RSTFC: A novel algorithm for spatio-temporal filtering and classification of single-trial EEG. IEEE Transactions on Neural Networks and Learning Systems, 26(12), 3070–3082.

    Article  MathSciNet  Google Scholar 

  26. Peng, Y., & Bao-Liang, L. (2016). Discriminative manifold extreme learning machine and applications to image and EEG signal classification. Neurocomputing, 174, 265–277.

    Article  Google Scholar 

  27. Tang, Q., Wang, J., & Wang, H. (2014). L1-norm based discriminative spatial pattern for single-trial EEG classification. Biomedical Signal Processing and Control, 10, 313–321.

    Article  Google Scholar 

  28. Alcn, O. F., Siuly, S., Bajaj, V., Guo, Y., Sengur, A., & Zhang, Y. (2016). Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method. Neurocomputing, 218, 251–258.

    Article  Google Scholar 

  29. Yin, Z., & Zhang, J. (2017). Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomedical Signal Processing and Control, 33, 30–47.

    Article  Google Scholar 

  30. Atyabi, A., Shic, F., & Naples, A. (2016). Mixture of autoregressive modeling orders and its implication on single trial EEG classification. Expert Systems with Applications, 65, 164–180.

    Article  Google Scholar 

  31. Soman, S., & Jayadeva. (2015). High performance EEG signal classification using classifiability and the twin SVM. Applied Soft Computing, 30, 305–318.

    Article  Google Scholar 

  32. Salazar-Varas, R., & Vazquez, R. A. (2018). Evaluating spiking neural models in the classification of motor imagery EEG signals using short calibration sessions. Applied Soft Computing, 67, 232–244.

    Article  Google Scholar 

  33. Hettiarachchi, I. T., Babaei, T., Nguyen, T., Lim, C. P., & Nahavandi, S. (2018). A fresh look at functional link neural network for motor imagery-based brain–computer interface. Journal of Neuroscience Methods, 305, 28–35.

    Article  Google Scholar 

  34. Zhang, Y., Wang, Y., Zhou, G., Jin, J., Wang, B., Wang, X., et al. (2018). Multi-kernel extreme learning machine for EEG classification in brain–computer interfaces. Expert Systems with Applications, 96, 302–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Juneja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, K., Rana, C. Individual and Mutual Feature Processed ELM Model for EEG Signal Based Brain Activity Classification. Wireless Pers Commun 108, 659–681 (2019). https://doi.org/10.1007/s11277-019-06423-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06423-w

Keywords

Navigation