Skip to main content
Log in

Practical Multiple User System Using Heterogeneous Frequency Modulation for High Data Rate in Underwater Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The goal of this paper is to improve the data rate in a multiple user (MU) underwater system. Toward this goal, we propose a new modulation, a combination of hyperbolic frequency modulation (HFM) and power frequency modulation (PFM) signals. By overlapping the heterogeneous signals, the number of bits which can be transferred during a symbol duration increase. In addition, by finely dividing the bandwidth into sub-channels, we increase the size of available modulation order per each user. Owing to the Doppler invariant characteristic of HFM signal, the Doppler shift can be estimated and it is utilized to compensate for the Doppler distortion occurred at the PFM signal. To take acoustic channel properties into account the system evaluation, we develop an acoustic network simulator involving well-defined propagation physics. The simulation results substantiate that our modulation scheme significantly increases data rate as compared with the existing MU systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 13(52), 257–279.

    Article  Google Scholar 

  2. Jiang, Z. (2008). Underwater acoustic networks-issues and solutions. International Journal of Intelligent Control and Systems, 13(3), 152–161.

    Google Scholar 

  3. Stojanovic, M., & Freitag, L. (2013). Recent trends in underwater acoustic communications. Marine Technology Society Journal, 47(5), 45–50.

    Article  Google Scholar 

  4. Zhu, Y., Peng, Z., Cui, J. H., & Chen, H. (2015). Toward practical MAC design for underwater acoustic networks. IEEE Transactions on Mobile Computing, 14(4), 872–886.

    Article  Google Scholar 

  5. Chen, K., Ma, M., Cheng, E., Yuan, F., & Su, W. (2014). A survey on MAC protocols for underwater wireless sensor networks. IEEE Communication Surveys and Tutorials, 16(3), 1433–1447.

    Article  Google Scholar 

  6. Sozer, E. M., Stojanovic, M., & Proakis, J. G. (2000). Underwater acoustic networks. IEEE Journal of Oceanic Engineering, 25(1), 72–83.

    Article  Google Scholar 

  7. Pompili, D., Melodia, T., & Akyildiz, I. F. (2009). A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(4), 1899–1909.

    Article  Google Scholar 

  8. Shen, H., & Suppappola, A. P. (2006). Diversity and channel estimation using time-varying signals and time-frequency techniques. IEEE Transactions on Signal Processing, 54(9), 3400–3413.

    Article  MATH  Google Scholar 

  9. Zhou, M., Zhang, J. J., & Suppappola, A. P. (2014). Hyperbolic frequency modulation for multiple users in underwater acoustic communications. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 3498–3502.

  10. Khan, M. A., Rao, R. K. & Wang, X. (2013). Non-linear trigonometric and hyperbolic chirps in multiuser spread spectrum communication systems. In IEEE 9th international conference on emerging technologies (ICET, pp. 3400–3413.

  11. Song, X., Willett, P., & Zhou, S. (2012). Range bias modeling for hyperbolic-frequency-modulated waveforms in target tracking. IEEE Journal of Oceanic Engineering, 37(4), 670–679.

    Article  Google Scholar 

  12. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical. Communications Magazine, 47(1), 84–89.

    Article  Google Scholar 

  13. Heritage, J. P., Thurston, R. N., Tomlinson, W. J., Weiner, A. M., & Stolen, R. H. (1985). Spectral windowing of frequency-modulated optical pulses in a grating compressor. Applied Physics Letters, 47(2), 87–89.

    Article  Google Scholar 

  14. Han, S. H., & Lee, J. H. (2005). An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Communications, 12(2), 56–65.

    Article  MathSciNet  Google Scholar 

  15. Yang, J., & Sarkar, T. K. (2007). A novel doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation. Digital Signal Processing, 17(6), 1019–1029.

    Article  Google Scholar 

  16. Shen, H., & Suppappola, A. P. (2007). Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter. IEEE Transactions on Signal Processing, 55(7), 3207–3217.

    Article  MathSciNet  MATH  Google Scholar 

  17. Diamant, R., Feuer, A., & Lampe, L. (2012). Choosing the right signal: Doppler shift estimation for underwater acoustic signals. In Sensors and transducers, pp. 1174–1179.

  18. Ramezani, H., & Leus, G. (2012). Ranging in an underwater medium with multiple isogradient sound speed profile layers. Sensors, 12(3), 2996–3017.

    Article  Google Scholar 

  19. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. In ACM SIGMOBILE mobile computing and communications review, pp. 34–43.

  20. Qarabaqi, P., & Stojanovic, M. (2013). Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE Journal of Oceanic Engineering, 38(4), 701–717.

    Article  Google Scholar 

  21. Galvin, R., & Coats, R. E. W. (1996). A stochastic underwater acoustic channel model. In MTS/IEEE oceans, pp. 203–210.

  22. Chitre, M. (2007). A high-frequency warm shallow water acoustic communications channel model and measurements. The Journal of the Acoustical Society of America, 122(5), 2580–2586.

    Article  Google Scholar 

  23. Zhang, J., Cross, J., & Zheng, Y. R. (2010) Statistical channel modeling of wireless shallow water acoustic communications from experiment data. In Proceedings of military communication conference, pp. 2412–2416) (2010).

  24. Hodges, R. P. (2010). Underwater acoustics: Analysis, design and performance of sonar (p. 2010). New York: Wiley.

    Book  Google Scholar 

  25. WAFO. (2011). A Matlab toolbox for analysis of random waves and loads, tutorial for WAFO v2.5. Lund Univ., Lund, Sweden [Online]. http://www.maths.lth.se/matstat/wafo.

  26. Lee, H., Kim, T. H., Choi, J. W., & Choi, S. (2015). Chirp signal-based aerial acoustic communication for smart devices. In IEEE conference on computer communications (INFOCOM), pp. 2407–2415.

Download references

Funding

This work (2016R1A2B4016588) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghwan Yoo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yoo, Y. Practical Multiple User System Using Heterogeneous Frequency Modulation for High Data Rate in Underwater Sensor Network. Wireless Pers Commun 108, 1393–1416 (2019). https://doi.org/10.1007/s11277-019-06475-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06475-y

Keywords

Navigation