Skip to main content

Advertisement

Log in

A Priority-Based MAC Protocol for Energy Consumption and Delay Guaranteed in Wireless Body Area Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) consist of tiny sensors that placed around or implant in the human body. These nodes can permanently monitor the health of patients. WBANs require medical applications for remote monitoring and health care. In WBANs, the main challenge is delay and limitations of energy consumption to prolong the network lifetime. In this context, a MAC protocol has been provided to guarantee energy consumption and delay reduction based on priority of data traffic. The design of this protocol consisted of four sections: First, the patient data traffic is prioritized and classified, which included normal data, periodic data, and emergency data. Second, the superframe structure is improved according to IEEE 802.15.4 and the priorities for the data are optimized. Third, the energy consumption and delay have been reduced by using the radio wake-up mechanism and through controlling the node modes. Four, for checking the node modes, the state diagram and the asymmetric hidden Markov method have been exploited to model the limited capacity of the buffers. This protocol has been simulated using NS-3, and simulation and evaluation results indicated that lower energy consumption and delay as well as improved network lifetimes compared to the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2016). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68–80.

    Article  Google Scholar 

  2. Fortino, G., Giannantonio, R., Gravina, R., & Kuryloski, P. (2013). Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Transactions on Human-Machine Systems, 43, 115–133.

    Article  Google Scholar 

  3. Fallahzadeh, R., Ma, Y., & Ghasemzadeh, H. (2016). Context-aware system design for remote health monitoring: An application to continuous edema assessment. IEEE Transactions on Mobile Computing, 16(8), 2159–2173.

    Article  Google Scholar 

  4. Hu, Y., Dong, M., Ota, K., & Liu, A. (2016). Mobile target detection in wireless sensor networks with adjustable sensing frequency. IEEE Systems Journal, 10, 1160–1171.

    Article  Google Scholar 

  5. Roy, S. V., Quitin, F., Liu, L., & Oestges, C. (2013). Dynamic channel modeling for multi-sensor body area networks. IEEE Transactions on Antennas and Propagation, 61, 2200–2208.

    Article  Google Scholar 

  6. Ayatollahitafti, V., Ngadi, M. A., Sharif, J. M., & Abdullahi, M. (2016). An efficient next hop selection algorithm for multi-hop body area networks. PLoS ONE, 11, e0146464.

    Article  Google Scholar 

  7. Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). Design and implementation of a Qos-aware MAC protocol for wireless multimedia sensor networks. Computer Communication, 34(16), 1991–2001.

    Article  Google Scholar 

  8. El-Hoiydi, A., & Decotignie, J.-D. (2004).WiseMAC: An ultra-low power MAC protocol for the downlink of infrastructure wireless sensor networks. In Proceedings of the 9th IEEE symposium on computers and communication (ISCC 2004), Alexandria, Egypt (pp. 244–251).

  9. Xia, F., Wang, L., Zhang, D., He, D., & Kong, X. (2015). An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 58(2), 125–138.

    Article  Google Scholar 

  10. Okdem, S. (2017). A real-time noise resilient data link layer mechanism for unslotted IEEE 802.15.4 networks. International Journal of Communication Systems, 30, e2955.

    Article  Google Scholar 

  11. IEEE 802.15.4. (2006). IEEE Standard for Information Technology 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for low-rate wireless personal area networks (LR-WPANs). New York, NY: The Institute of Electrical and Electronics Engineers, Inc.

    Google Scholar 

  12. Zhou, J., Guo, A., Xu, J., & Su, S. (2014). An optimal fuzzy control medium access in wireless body area networks. Neurocomputing, 142, 107–114.

    Article  Google Scholar 

  13. Yoon, J. S., Ahn, G.-S., Joo, S.-S., & Lee, M. J. (2010). PNP-MAC: Preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. In 2010 7th IEEE consumer communications and networking conference (pp. 1–5).

  14. Liu, B., Yan, Z. S., & Chen, C. W. (2013). MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communication, 20, 64–72.

    Article  Google Scholar 

  15. Antoni, M., Alejandro, C., Marc, B., & Lopez, V. (2016). Data aggregation and principal component analysis in WSNs. IEEE Transactions on Wireless Communication, 15, 3908–3919.

    Article  Google Scholar 

  16. Asemani, M., & Esnaashari, M. (2015). Learning automata based energy efficient data aggregation in wireless sensor networks. Wireless Network, 21, 2035–2053.

    Article  Google Scholar 

  17. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. H. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. Wireless Networks, 21, 2571–2592.

    Article  Google Scholar 

  18. Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.  

    Article  Google Scholar 

  19. Laufer, R., & Kleinrock, L. (2016). The capacity of wireless CSMA/CA networks. IEEE/ACM Transactions on Networks, 24, 1518–1532.

    Article  Google Scholar 

  20. Sasaki, M., Furuta, T., Ukai, T., & Ishizaki, F. (2016). TDMA scheduling problem avoiding interference in multi-hop wireless sensor networks. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(3). https://doi.org/10.1299/jamdsm.2016jamdsm0047.

  21. Feng, L., Yu, J. G., Cheng, X. Z., & Wang, S. L. (2016). Analysis and optimization of delayed channel access for wireless cyber-physical systems. EURASIP Journal on Wireless Communication and Network, https://doi.org/10.1186/s13638-016-0557-9.

  22. Yu, J. G., Huang, B. G., Cheng, X. Z., & Atiquzzaman, M. (2017). Shortest link scheduling algorithms in wireless networks under the SINR model. IEEE Transactions on Vehicular Technology, 66, 2643–2657.

    Article  Google Scholar 

  23. Akbar, M. S., Yu, H. N., & Cang, S. (2016). Delay, reliability, and throughput based QoS profile: A MAC layer performance optimization mechanism for biomedical applications in wireless body area sensor networks. Journal of Sensors. https://doi.org/10.1155/2016/7170943.

    Google Scholar 

  24. Gama, O., & Simoes, R. (2014). A hybrid MAC scheme to improve the transmission performance in body sensor networks. Wireless Personal Communication, 80, 1263–1279.

    Article  Google Scholar 

  25. Ullah, S., Imran, M., & Alnuem, M. (2014). A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2014/481761.

    Google Scholar 

  26. Sarkar, S., Misra, S., Bandyopadhyay, B., Chakraborty, C., & Obaidat, M. S. (2015). Performance analysis of IEEE 802.15.6 MAC protocol under non-ideal channel conditions and saturated traffic regime. IEEE Transactions on Computers, 64, 2912–2925.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ali, K., Sarker, J., & Mouftah, H. (2010). Urgency-based MAC protocol for wireless sensor body area networks. In Communications workshops.

  28. Yoon, J. S., Ahn, G.-S., Joo, S.-S., & Lee, M. J. (2010). PNP-MAC: Preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. In Proceedings of the 2010 7th IEEE consumer communications and networking conference, Las Vegas, NV, USA (pp. 1–5).

  29. Monowar, M. M., Hassan, M. M., Bajaber, F., Al-Hussein, M., & Alamri, A. (2012). McMAC: Towards a MAC protocol with multi-constrained Qos providing for diverse traffic in wireless body area networks. Sensors, 12, 15599–15627.

    Article  Google Scholar 

  30. Anjum, I., Alam, N., Razzaque, M. A., Mehedi Hassan, M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 9(3), 1–9.

  31. Hossain, M. U., Dilruba, M. K., Rana, M. R., & Rahman, M. O. (2014). Multi-dimensional traffic adaptive energy-efficient MAC protocol for wireless body area networks. In Proceedings of the 9th International Forum on Strategic Technology (IFOST’14) (pp. 161–165). Chittagong: IEEE.

  32. Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16, 401.

    Article  Google Scholar 

  33. Kim, B., & Cho, J. (2012). A novel priority-based channel access algorithm for contention-based MAC protocol in WBANs. In Proceedings of the 6th international conference on ubiquitous information management and communication (ICUIMC 2012), Kuala Lumpur, Malaysia (pp. 1–5).

  34. Alam, M. M., Berder, O., Menard, D., & Sentieys, O. (2012). TAD-MAC: Traffic-aware dynamic MAC protocol for wireless body area sensor networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2, 2156–3357. https://doi.org/10.1109/JETCAS.2012.2187243.

    Article  Google Scholar 

  35. Lin, L., Yang, C., Wong, K. J. U., Yan, H., Shen, J., & Phee, S. J. A. (2014). An energy efficient MAC protocol for multi-hop swallowable body sensor networks. Sensors, 14(10), 19457–19476.

    Article  Google Scholar 

  36. Ullah, S., & Kwak, K. S. (2012). An ultra-low-power and traffic adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.

    Article  Google Scholar 

  37. Zhang, C. Q., Wang, Y. L., Liang, Y. Q., Shu, M., & Chen, C. F. (2016). An energy-efficient MAC protocol for medical emergency monitoring body sensor networks. Sensors, 16, 385. https://doi.org/10.3390/s16030385.

    Article  Google Scholar 

  38. Yan, Z., & Liu, B. (2011). A context aware MAC protocol for medical wireless body area network. In Proceedings of the 7th international wireless communications and mobile computing conference (IWCMC 2011), Istanbul, Turkey (pp. 2133–2138).

  39. Hayes, J. F., & Babu, T. V. J. G. (2004). Modeling and analysis of telecommunications networks. New York: Wiley.

    Book  Google Scholar 

  40. Bueno, M. L. P., Hommersom, A., Lucas, P. J. F., & Linard, A. (2017). Asymmetric hidden Markov models. International Journal of Approximate Reasoning, 88, 169–191. https://doi.org/10.1016/j.ijar.2017.05.011.

    Article  MathSciNet  MATH  Google Scholar 

  41. Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U., Vasilakos, A. (2017). Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Network, 23, 1249–1266. https://doi.org/10.1007/s11276-016-1199-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hosseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rismanian Yazdi, F., Hosseinzadeh, M. & Jabbehdari, S. A Priority-Based MAC Protocol for Energy Consumption and Delay Guaranteed in Wireless Body Area Networks. Wireless Pers Commun 108, 1677–1696 (2019). https://doi.org/10.1007/s11277-019-06490-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06490-z

Keywords

Navigation