Skip to main content
Log in

A Light Weight Secure Communication Scheme for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The majority of security systems for wireless sensor networks are based on symmetric encryption. The main open issue for these approaches concerns the establishment of symmetric keys. A promising key distribution technique is the random pre-distribution of secret keys. Despite its effectiveness, this approach presents considerable memory overheads, in contrast with the limited resources of wireless sensor networks. A new scheme, called Seed based Min–Max Composite (S2MC), is proposed that exploits the best features of random pre-distribution with lower memory requirements and higher resilience. The novelty of the S2MC scheme lies in the organization of the secret material that uses the limited number of light weight pre-distributed seeds in a certain range and generating keys from the seeds during communication. The simulative analysis demonstrates that the introduced approach provides a higher level of security in terms of resilience than the existing schemes since the keys are erased after communication in the presence of compromised nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M. (2018). A survey on fault diagnosis in wireless sensor networks. IEEE Access, 6, 11349–11364.

    Article  Google Scholar 

  2. Choi, J., Bang, J., Kim, L. H., Ahn, M., & Kwon, T. (2017). Location-based key management strong against insider threats in wireless sensor networks. IEEE Systems Journal, 11(2), 494–502.

    Article  Google Scholar 

  3. Yousefpoor, M. S., & Barati, H. (2018). Dynamic key management algorithms in wireless sensor networks: A survey. Computer Communications, COMCOM 5796.

  4. Wazid, M., Das, A. K., & Vasilakos, A. V. (2018). Authenticated key management protocol for cloud-assisted body area sensor networks. Journal of Network and Computer Applications, YJNCA 2208.

  5. Zhan, F., Yao, N., Gao, Z., & Tan, G. (2017). A novel key generation method for wireless sensor networks based on system of equations. Journal of Network and Computer Applications, 82, 114–127.

    Article  Google Scholar 

  6. Xu, M., & Liu, L. (2018). Sensevault: A three-tier framework for securing mobile underwater sensor networks. IEEE Transactions on Mobile Computing, 17(11), 2632–2645.

    Article  Google Scholar 

  7. Agrawal, S., & Das, M. L. (2017). Mutual healing enabled group-key distribution protocol in wireless sensor networks. Computer Communications, 112, 131–140.

    Article  Google Scholar 

  8. Athmani, S., Bilami, A., & Boubiche, D. E. (2017). EDAK: An efficient dynamic authentication and key management mechanism for heterogeneous WSNs. Future Generation Computer Systems, FUTURE 3765.

  9. Seo, S. H., Won, J., Sultana, S., & Bertino, E. (2015). Effective key management in dynamic wireless sensor networks. Information Forensics and Security, IEEE Transactions on, 10(2), 371–383.

    Article  Google Scholar 

  10. Ahlawat, P., & Dave, M. (2018). An attack model based highly secure key management scheme for wireless sensor networks. Procedia Computer Science, 125, 201–207.

    Article  Google Scholar 

  11. Jiang, Q., Zeadally, S., Ma, J., & He, D. (2017). Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access, 5, 3376–3392.

    Article  Google Scholar 

  12. Al-Turjman, F., Ever, Y. K., Ever, E., Nguyen, H. X., & David, D. B. (2017). Seamless key agreement framework for mobile-sink in IoT based cloud-centric secured public safety sensor networks. IEEE Access, 5, 24617–24631.

    Article  Google Scholar 

  13. Omar, M., Belalouache, I., Amrane, S., & Abbache, B. (2018). Efficient and energy-aware key management framework for dynamic sensor networks. CAEE, 1–16.

  14. Anita, E. A. M., Geetha, R., & Kannan, E. (2015). A novel hybrid key management scheme for establishing secure communication in wireless sensor networks. Wireless Personal Communications, 82(3), 1419–1433.

    Article  Google Scholar 

  15. Bechkit, W., Challal, Y., Bouabdallah, A., & Tarokh, V. (2013). A highly scalable key pre-distribution scheme for wireless sensor networks. IEEE Transaction Wireless Communication, 12(2).

  16. Eltoweissy, M., Moharrum, M., & Mukkamala, R. (2006). Dynamic key management in sensor networks. IEEE Communication Magazine, 44(4), 122–130.

    Article  Google Scholar 

  17. Gandino, F., Montrucchio, B., & Rebaudengo, M. (2014). Key management for static wireless sensor networks with node adding. IEEE Transaction on Industrial Informatics, 10(2), 1133–1143.

    Article  Google Scholar 

  18. Guan, Z., & Yu, Y. (2008). A key management scheme using deployment knowledge for wireless sensor networks. IEEE Transaction on Parallel and Distribrituted System, 19(10), 1411–1425.

    Article  Google Scholar 

  19. Hackmann, G., Guo, W., Yan, G., Sun, Z., Lu, C., & Dyke, S. (2014). Cyber-physical co-design of distributed structural health monitoring with wireless sensor networks. IEEE Transaction on Parallel and Distributed System, 25(1), 63–72.

    Article  Google Scholar 

  20. Kwon, T., Lee, J., & Song, J. (2009). Location-based pair-wise key pre-distribution for wireless sensor networks. IEEE Transaction on Wireless Communication, 8(11), 5436–5442.

    Article  Google Scholar 

  21. Seo, S. H., Won, J., Sultana, S., & Bertino, E. (2015). Effective key management in dynamic wireless sensor networks. IEEE Transaction on Information Forensics and Security, 10(2), 371–383.

    Article  Google Scholar 

  22. Du, W., Deng, J., Han, Y. S., & Varshney, P. K. (2006). A key pre-distribution scheme for sensor networks using deployment knowledge. IEEE Transactions on Dependable and Secure Computing, 3(1), 62–77.

    Article  Google Scholar 

  23. Yu, C. M., Sou, Y. T. T., Lu, C. S., & Kuo, S. Y. (2013). Localized algorithms for detection of node replication attacks in mobile sensor networks. IEEE Transaction on Information Forensics and Security, 8(5), 754–768.

    Article  Google Scholar 

  24. Yum, D., & Lee, P. J. (2012). Exact formulae for resilience in random key pre-distribution scheme. IEEE Transaction on Wireless Communication, 11(5), 1638–1642.

    Article  Google Scholar 

  25. Rasheed, A., & Mahapatra, R. (2011). Keypredistribution schemes for establishing pairwise keys with a mobile sink in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(1), 176–184.

    Article  Google Scholar 

  26. Das, A. K. (2011). An efficient random key distribution scheme for largescale distributed sensor networks. Security and Communication Networks, 4(2), 162–180.

    Article  Google Scholar 

  27. Zhu, S., Setia, S., & Jajodia, S. (2006). Leap+: Efficient security mechanisms for large-scale distributed sensor networks. ACM Transactions on Sensor Networks, 2(4), 500–528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Geetha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, R., Madhusudhan, V., Padmavathy, T. et al. A Light Weight Secure Communication Scheme for Wireless Sensor Networks. Wireless Pers Commun 108, 1957–1976 (2019). https://doi.org/10.1007/s11277-019-06503-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06503-x

Keywords

Navigation