Skip to main content
Log in

Indoor Positioning Algorithm Fusing Multi-Source Information

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the development of computer technology, mobile intelligent terminal and wireless local area network (WLAN), the applications of location services have shown significant growth, and much progress has been made both in the applications and researches. According to the actual application requirements, a robust indoor positioning algorithm fusing multi-source information was presented in this paper. Firstly, the methods based on the inertial navigation system (INS) and the received signal strength (RSS) of WLAN were discussed and together with their advantages and disadvantages. Then, in order to further improve the positioning performance, a fusion model based on the sparse signal representation theory was designed to integrate the INS and RSS information, and next the optimization solution approach for the fusion model was deeply discussed. Finally, the simulation experiments were designed and carried out, and the experimental results demonstrated the feasibility and effectiveness of the proposed fusion algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leondes, C. T., & Yonezawa, K. (1978). Evaluation of geometric performance of global positioning system. IEEE Transactions on Aerospace and Electronic Systems, AES,14(3), 533–539.

    Article  Google Scholar 

  2. Parkinson, B. W., & Gilbert, S. W. (1983). NAVSTAR: Global positioning system—ten years later. Proceedings of the IEEE,71(10), 1177–1186.

    Article  Google Scholar 

  3. Dale, S. A., & Daly, P. (1987). The Soviet Union’s GLONASS navigation satellites. IEEE Aerospace and Electronic Systems Magazine,2(5), 13–17.

    Article  Google Scholar 

  4. Cinar, T., & Ince, F. (2005). Contribution of GALILEO to search and rescue. In International conference on recent advances in space technologies (pp. 254–259). Istanbul: Turkish Air Force Acad.

  5. China Satellite Navigation Office. (2010). BeiDou navigation satellite system. In The 5th meeting of the United Nations international committee on global navigation satellite systems, Turin, Italy.

  6. Sun, G., Chen, J., Guo, W., & Liu, K. R. (2005). Signal processing techniques in network-aided positioning: A survey of state-of-the-art positioning designs. IEEE Signal Processing Magazine,22(4), 12–23.

    Article  Google Scholar 

  7. Chon, M., & Cha, H. (2011). Life map: A smartphone-based context provider for location-based services. IEEE Pervasive Computing,10(2), 58–67.

    Article  Google Scholar 

  8. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics,37(6), 1067–1080.

    Article  Google Scholar 

  9. Nilsson, J. O., Gupta, A. K., & Handel, P. (2014). Foot-mounted inertial navigation made easy. In International conference on indoor positioning and indoor navigation (pp. 24–29).

  10. Sarkar, S., Ghose, A., & Misra, A. (2015). Improving the error drift of inertial navigation based indoor location tracking. In ACM 14th international conference on information processing in sensor networks (pp. 352–353).

  11. Xu, Z., Wei, J., Zhang, B., & Yang, W. (2015). A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors. Sensors,15(4), 7708–7727.

    Article  Google Scholar 

  12. Duong, P. D., & Suh, Y. S. (2015). Foot pose estimation using an inertial sensor unit and two distance sensors. Sensors,15(7), 15888–15902.

    Article  Google Scholar 

  13. Diaz, E. M. (2015). Inertial pocket navigation system: Unaided 3D positioning. Sensors,15(4), 9156–9178.

    Article  Google Scholar 

  14. Pham, D. D., & Suh, Y. S. (2016). Pedestrian navigation using foot-mounted inertial sensor and LIDAR. Sensors,16(1), 120.

    Article  Google Scholar 

  15. Ward, A., Jones, A., & Harper, A. (1997). A new location technique for the active office. IEEE Personal Communications,4(5), 42–47.

    Article  Google Scholar 

  16. Priyantha, N., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In ACM annual international conference on mobile computing and networking (MOBICOM) (pp. 32–43) Boston: ACM.

  17. Want, R., Hopper, A., Falcao, A., & Gibbons, J. (1992). Active badge location system. ACM Transactions on Information Systems,10(1), 91–102.

    Article  Google Scholar 

  18. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Transactions on Communications Surveys and Tutorials,11(1), 13–32.

    Article  Google Scholar 

  19. Jin, G. Y., Lu, X. Y., & Park, M. S. (2006). An indoor localization mechanism using active RFID tag. In IEEE international conference on sensor networks, ubiquitous and trustworthy computing (Vol. 1, pp. 40–43).

  20. WhereNet real-time locating system. https://www.zebra.com/. Accessed 6 June 2017.

  21. Ni, L. M., Liu, Y., Lan, Y. C., & Patil, A. P. (2004). LANDMARC: Indoor location sensing using active RFID. ACM Wireless Networks,10(6), 701–710.

    Article  Google Scholar 

  22. Zhang, Y., Liu, W., Fang, Y., & Wu, D. (2006). Secure localization and authentication in ultra-wideband sensor networks. IEEE Transactions on Selected Areas in Communications,24(41), 829–835.

    Article  Google Scholar 

  23. Jiménez, A. R., & Seco, F. (2017). Comparing Ubisense, BeSpoon, and DecaWave UWB location systems: Indoor performance analysis. IEEE Transactions on Instrumentation and Measurement,99, 1–12.

    Google Scholar 

  24. The Series 7000 Ubisense UWB sensors. http://www.ubisense.net/. Accessed 10 June 2017.

  25. Positioning micro label. http://www.tsingoal.com/. Accessed 3 Sept 2017.

  26. Huh, J. H., & Seo, K. (2017). An indoor location-based control system using Bluetooth beacons for IoT systems. Sensors,17(12), 2917.

    Article  Google Scholar 

  27. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In IEEE international conference on computer and communications (Vol. 2, pp. 775–784). Tel Aviv: IEEE.

  28. EKAHAU. http://www.ekahau.com/. Accessed 7 Sept 2017.

  29. Castro, P., Chiu, P., Kremenek, T., & Muntz, R. (2001). A probabilistic room location service for wireless networked environments. In International conference on ubiquitous computing (pp. 18–34). Seattle: ACM.

  30. Youssef, M., & Agrawala, A. K. (2005). The Horus WLAN location determination system. In International conference on mobile systems, applications and services (pp. 205–218). Seattle: ACM.

  31. Wu, C., Yang, Z., Liu, Y., & Xi, W. (2013). WILL: Wireless indoor localization without site survey. IEEE Transactions on Parallel and Distributed Systems,24(4), 839–848.

    Article  Google Scholar 

  32. Lim, H., Kung, L. C., Hou, J. C., & Luo, H. (2010). Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wireless Networks,16(2), 405–420.

    Article  Google Scholar 

  33. Chintalapudi, K., Iyer, A. P., & Padmanabhan, V. N. (2010). Indoor localization without the pain. ACM International Conference on Mobile Computing & Networking,49(1), 173–184.

    Google Scholar 

  34. Kaemarungsi, K. (2005). Efficient design of indoor positioning systems based on location fingerprinting. IEEE International Conference on Wireless Networks, Communications and Mobile Computing,1(6), 181–186.

    Google Scholar 

  35. Kaemarungsi, K., & Krishnamurthy, P. (2004). Modeling of indoor positioning system based on location fingerprinting. Proceedings of IEEE INFOCOM/Joint Conference of the IEEE Computer & Communications Societies,2(2), 1012–1022.

    Google Scholar 

  36. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, S. T., & Wei, D. (2009). A survey on compressive sensing. Acta Automatica Sinica,35(11), 1369–1377.

    Article  Google Scholar 

  38. Shi, G. M., Liu, D. H., Gao, D. H., Liu, Z., Lin, J., & Wang, L. J. (2009). Advances in theory and application of compressed sensing. Acta Electronica Sinica,37(5), 1070–1081.

    Google Scholar 

  39. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE,98(6), 1031–1044.

    Article  Google Scholar 

  40. Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science,209(1–2), 237–260.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wright, J., Yang, A., Ganesh, A., Sastry, S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,31(2), 210–227.

    Article  Google Scholar 

  42. Cai, S., Liao, W., Luo, C., Li, M., Huang, X., & Li, P. (2017). CRIL: An efficient online adaptive indoor localization system. IEEE Transactions on Vehicular Technology,66(5), 4148–4160.

    Google Scholar 

  43. Vasilyev, P., Pearson, S., Elgohary, M., Aboy, M., & Mcnames, J. (2017). Inertial and time-of-arrival ranging sensor fusion. Gait & Posture,54, 1–7.

    Article  Google Scholar 

  44. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning,3(1), 1–122.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by the Beijing Key Laboratory of Intelligent Logistics System (No. BZ0211), Beijing Intelligent Logistics System Collaborative Innovation Center, Beijing youth top-notch talent plan of High-Creation Plan (No. 2017000026833ZK25), Canal Plan Leading Talent Project of Beijing Tongzhou District (No. YHLB2017038), General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (No. KM201710037001), Grass-roots Academic Team Building Project of Beijing Wuzi University (No. 2019XJJCTD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengliang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Xue, F., Liu, T. et al. Indoor Positioning Algorithm Fusing Multi-Source Information. Wireless Pers Commun 109, 2541–2560 (2019). https://doi.org/10.1007/s11277-019-06696-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06696-1

Keywords

Navigation