Skip to main content
Log in

A Tree Based Novel Approach for Graph Coloring Problem Using Maximal Independent Set

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Graph coloring problem is a famous NP-complete problem and there exist several methods which have been projected to resolve this issue. For a graph colouring algorithm to be efficient, it ought to paint the input graph by minimum colours and must also find the solution in the minimum possible time. Here, we have proposed a different method to solve the graph coloring problem using maximal independent set. In our method, we used the concept of maximal independent sets using trees. In the first part, it converts a massive graph into a sequence of step by step smaller graphs by eliminating big independent sets from the initial graph. The second part starts by assigning a proper colour to each maximal independent set within the sequence. The proposed method is estimated on the DIMACS standards and presented reasonable outcomes concerning to other latest methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: W.H. Freeman and Company.

    MATH  Google Scholar 

  2. de Werra, D., Eisenbeis, C., Lelait, S., & Marmol, B. (1999). On a graph-theoretical model for cyclic register allocation. Discrete Applied Mathematics,93(2–3), 191–203.

    Article  MathSciNet  Google Scholar 

  3. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper heuristic for timetabling problems. European Journal of Operational Research,176, 177–192.

    Article  MathSciNet  Google Scholar 

  4. Smith, D. H., Hurley, S., & Thiel, S. U. (1998). Improving heuristics for the frequency assignment problem. European Journal of Operational Research,107(1), 76–86.

    Article  Google Scholar 

  5. Zufferey, N., Amstutz, P., & Giaccari, P. (2008). Graph colouring approaches for a satellite range scheduling problem. Journal of Scheduling,11(4), 263–277.

    Article  MathSciNet  Google Scholar 

  6. Karp, R. M. (1972). Reducibility among combinatorial problems (pp. 85–103). New York: Plenum Press.

    Google Scholar 

  7. Brelez, D. (1979). New methods to color the vertices of a graph. Communications of the ACM,22(4), 251–256.

    Article  MathSciNet  Google Scholar 

  8. Leighton, F. T. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards,84(6), 489–506.

    Article  MathSciNet  Google Scholar 

  9. Blochligerand, I., & Zufferey, N. (2008). A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research,35(3), 960–975.

    Article  MathSciNet  Google Scholar 

  10. Dorne, R., & Hao, J. K. (1998). Tabu search for graph coloring, T-colorings and set T-colorings. In S. Voß, S. Martello, I. H. Osman, & C. Roucairol (Eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization (pp. 77–92). New York: Springer.

    Google Scholar 

  11. Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph coloring. Computing,39, 345–351.

    Article  MathSciNet  Google Scholar 

  12. Porumbel, D. C., Hao, J. K., & Kuntz, P. (2010). An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Computers & Operations Research,37(10), 1822–1832.

    Article  Google Scholar 

  13. Chams, M., Hertz, A., & de Werra, D. (1987). Some experiments with simulated annealing for coloring graphs. European Journal of Operational Research,32, 260–266.

    Article  MathSciNet  Google Scholar 

  14. Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization by simulated annealing: An experimental evaluation; Part II, graph coloring and number partitioning. Operations Research,39(3), 378–406.

    Article  Google Scholar 

  15. Dorne, R., & Hao, J. K. (1998). A new genetic local search algorithm for graph coloring. Lecture Notes in Computer Science,1498, 745–754.

    Article  Google Scholar 

  16. Galinier, P., Hertz, A., & Zufferey, N. (2008). An adaptive memory algorithm for the K-colouring problem. Discrete Applied Mathematics,156(2), 267–279.

    Article  MathSciNet  Google Scholar 

  17. Lu, Z., & Hao, J. K. (2010). A memetic algorithm for graph coloring. European Journal of Operational Research,200(1), 235–244.

    Article  MathSciNet  Google Scholar 

  18. Malaguti, E., Monaci, M., & Toth, P. (2008). A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing,20(2), 302–316.

    Article  MathSciNet  Google Scholar 

  19. Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring. Computers & Operations Research,33(9), 2547–2562.

    Article  MathSciNet  Google Scholar 

  20. Fleurent, C., & Ferland, J. A. (1996). Genetic and hybrid algorithms for graph coloring. Annals of Operations Research,63, 437–461.

    Article  Google Scholar 

  21. Wu, Q., & Hao, J. K. (2012). Coloring large graphs based on independent set extraction. Computers & Operations Research,39(2), 283–290.

    Article  MathSciNet  Google Scholar 

  22. Hao, J. K., & Wu, Q. (2012). Improving the extraction and expansion method for large graph coloring. Discrete Applied Mathematics,160(16–17), 2397–2407.

    Article  MathSciNet  Google Scholar 

  23. Campelo, M. B., Campos, V. A., & Correa, R. C. (2008). On the asymmetric representatives formulation for the vertex coloring problem. Discrete Applied Mathematics,156(7), 1097–1111.

    Article  MathSciNet  Google Scholar 

  24. Hansen, P., Labbe, M., & Schindl, D. (2009). Set covering and packing formulation of graph coloring: Algorithms and first polyhedral results. Discrete Optimization,6(2), 135–147.

    Article  MathSciNet  Google Scholar 

  25. Malaguti, E., Monaci, M., & Toth, P. (2011). An exact approach for the vertex coloring problem. Discrete Optimization,8(2), 174–190.

    Article  MathSciNet  Google Scholar 

  26. Gualandi, S., & Malucelli, F. (2012). Exact solution of graph coloring problems via constraint programming and column generation. INFORMS Journal on Computing,24(1), 81–100.

    Article  MathSciNet  Google Scholar 

  27. Seidman, S. (1983). Network structure and minimum degree. Social Networks,5(3), 269–287.

    Article  MathSciNet  Google Scholar 

  28. Rossi, R. A., & Ahmed, N. K. (2014). Coloring large complex networks. Social Network Analysis: Mining,4(1), 228–239.

    Article  Google Scholar 

  29. Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing,27(1), 164–177.

    Article  Google Scholar 

  30. Wu, Q., & Hao, J. K. (2013). An extraction and expansion approach for graph coloring. Asia-Pacific Journal of Operational Research,30(5), 132–147.

    Article  MathSciNet  Google Scholar 

  31. Peng, Y., Choi, B., He, B., Zhou, S., Xu, R., & Yu, X. (2016). Vcolor: A practical vertex-cut based approach for coloring large graphs. In 32nd IEEE international conference on data engineering, Helsinki, Finland, May 2016 (pp. 97–108).

  32. Lin, J., Cai, S., Luo, C., & Su, K. (2017). A reduction based method for coloring very large graphs. In Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI-17) (pp. 517–523).

  33. DIMACS Implementation Challenges. Retrieved from 10 Sept 2016 http://dimacs.rutgers.edu/Challenges/.

  34. Graph coloring instances. http://mat.gsia.cmu.edu/COLOR/instances.html.

  35. Mendez-Diaz, I., & Zabala, P. (2006). A branch and cut algorithm for graph coloring. Discrete Applied Mathematics,154(5), 826–847.

    Article  MathSciNet  Google Scholar 

  36. Malaguti, E., Monaci, M., & Toth, A. (2008). A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing,20(2), 302–316.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.C., Chaudhari, N.S. A Tree Based Novel Approach for Graph Coloring Problem Using Maximal Independent Set. Wireless Pers Commun 110, 1143–1155 (2020). https://doi.org/10.1007/s11277-019-06778-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06778-0

Keywords

Navigation