Skip to main content
Log in

An Improved Chaotic Cryptosystem for Image Encryption and Digital Watermarking

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, enhanced chaotic range map is used for data hiding and multimedia security. By using complex properties of improved chaotic logistic map that include non-periodical motion and non-convergence, a new watermarking algorithm and image encryption scheme is proposed. For image encryption, the process of grayscale substitution in the form of encryption matrix randomly changes all pixel values of an image. In watermarking, the chaotic improved logistic system is used for identifying the embedding locations of the watermark. The Simulation results and statistical analyses specify that our techniques are comparatively secure and effective from existing ones, and are more practicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hussain, I., Shah, T., & Gondal, M. A. (2012). An efficient image encryption algorithm based on S8 S-box transformation and NCA map. Optics Communications,285, 4887–4890.

    Article  Google Scholar 

  2. Guan, Z. H., Huang, F. J., & Guan, W. J. (2005). Chaos-based image encryption algorithm. Physics Letters A,34, 153–157.

    Article  Google Scholar 

  3. Cox, I. J., Doerr, G., & Furon, T. (2006). Digital watermarking (pp. 1–15). Berlin: Springer.

    Book  Google Scholar 

  4. Alexopoulos, C., Bourbakis, N. G., & Ioannou, N. (1995). Image encryption method using a class of fractals. Journal of Electronic Imaging,4, 251–259.

    Article  Google Scholar 

  5. Zhou, Y., Panetta, K., Agaian, S., & Chen, C. L. P. (2012). Image encryption using P-Fibonacci transform and decomposition. Optics Communication,285(5), 594–608.

    Article  Google Scholar 

  6. Zhou, Y., Panetta, K., Agaian, S., & Chen, C. L. P. (2013). (n, k, p)-gray code for image systems. IEEE Transactions on Cybernetics,43(2), 515–529.

    Article  Google Scholar 

  7. Chen, T. H., & Wu, C. S. (2010). Compression-unimpaired batch-image encryption combining vector quantization and index compression. Information Sciences,180(9), 1690–1701.

    Article  Google Scholar 

  8. Jamal, S. S., Shah, T., & Hussain, I. (2013). An efficient scheme for digital watermarking using chaotic map. Nonlinear Dynamics,73, 1469–1474.

    Article  MathSciNet  Google Scholar 

  9. Attaullah, Jamal, S. S., & Shah, T. (2017). A novel scheme for image encryption using substitution box and chaotic system. Nonlinear Dynamics. https://doi.org/10.1007/s11071-017-3874-6.

    Article  Google Scholar 

  10. Zhang, Y. (2018). The unified image encryption algorithm based on chaos and cubic S-Box. Information Sciences,450, 361–377.

    Article  MathSciNet  Google Scholar 

  11. Wu, J., Liao, X., & Yang, B. (2018). Image encryption using 2D Henan-Sine map and DNA approach. Signal Processing,153, 11–23.

    Article  Google Scholar 

  12. Hussain, I., Shah, T., Gondal, M. A., & Mahmood, H. (2013). A novel image encryption algorithm based on chaotic maps and GF(28) exponent transformation. Nonlinear Dynamics,72, 399–406.

    Article  MathSciNet  Google Scholar 

  13. Khan, M., & Shah, T. (2015). An efficient construction of substitution box with fractional chaotic system. Signal, Image and Video Processing,9(6), 1335–1338.

    Article  MathSciNet  Google Scholar 

  14. Liu, D., Zhang, W., Yu, H., & Zhu, Z. (2018). An image encryption scheme using self-adaptive selective permutation and inter-intra-block feedback diffusion. Signal Processing,151, 130–143.

    Article  Google Scholar 

  15. Ping, P., Wu, H., Mao, Y., Xu, F., & Fan, J. (2018). Design of image cipher using life-like cellular automata and chaotic map. Signal Processing,150, 233–247.

    Article  Google Scholar 

  16. Zhou, Y., Bao, L., & Chen, C. L. P. (2014). A new 1D chaotic system for image encryption. Signal Processing,97, 172–182.

    Article  Google Scholar 

  17. Khan, M., Shah, T., Mahmood, H., & Gondal, M. A. (2013). An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dynamics,71(3), 489–492.

    Article  MathSciNet  Google Scholar 

  18. Wu, Y., Yang, G., Jin, H., & Noonan, J. P. (2012). Image encryption using the two-dimensional Logistic chaotic map. Journal of Electronic Imaging,21(1), 013014-1.

    Article  Google Scholar 

  19. Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering,66, 10–18.

    Article  Google Scholar 

  20. Belazi, A., Khan, M., El-Latif, A. A. A., & Belghith, S. (2017). Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption. Nonlinear Dynamics,88, 337–362.

    Article  Google Scholar 

  21. Hernandez, L. R., & Amado, M. (2000). DCT-domain watermarking techniques for still images: Detector performance analysis and a new structure. IEEE Transactions on Image Processing,9(1), 55–68.

    Article  Google Scholar 

  22. Furon, T., & Duhamel, P. (2003). An asymmetric watermarking method. IEEE Transactions on Signal Processing,51(4), 981–995.

    Article  MathSciNet  Google Scholar 

  23. Cox, U., Kilian, L., Leighton, F., & Shamoon, T. (1997). Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing,6, l673–l1687.

    Article  Google Scholar 

  24. Cox, U., Miller, M. L., & Bloom, J. (2002). Digital watermarking. San Mateo: Morgan Kaufmann.

    Google Scholar 

  25. Nikolaidis, A., & Pitas, L. (2000). Comparison of different chaotic maps with application to image watermarking. In Proceedings IEEE symposium circuits and system, Geneva (Vol. 5, pp. 509–512).

  26. Giovanardi, A., & Mazzini, G. (2001). Frequency domain chaotic watermarking. In Proceedings IEEE symposium circuits and system, Sydney (Vol. 2, pp. 521–524).

  27. Wu, X., & Guan, Z. H. (2007). A novel digital watermark algorithm based on chaotic maps. Physics Letters A,365, 403–406.

    Article  Google Scholar 

  28. Xiang, T., Wong, K. W., & Liao, X. (2007). Selective image encryption using a spatiotemporal chaotic system. Chaos,17, 023115.

    Article  Google Scholar 

  29. Wang, X. Y. (2003). Chaos in the complex nonlinearity System. Beijing: Electronics Industry Press.

    Google Scholar 

  30. Attaullah, Jamal, S. S., & Shah, T. (2017). A novel construction of substitution box using a combination of chaotic maps with improved chaotic range. Nonlinear Dynamics. https://doi.org/10.1007/s11071-017-3409-1.

    Article  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University fo r funding this work through research groups program under grant number R.G.P. 2/58/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attaullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attaullah, Shah, T. & Jamal, S.S. An Improved Chaotic Cryptosystem for Image Encryption and Digital Watermarking. Wireless Pers Commun 110, 1429–1442 (2020). https://doi.org/10.1007/s11277-019-06793-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06793-1

Keywords

Navigation