Skip to main content
Log in

Generalized Three Dimensional Coprime Array for Two-Dimensional DOA Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we extend the coprime planar array to coprime cubic array and propose a three dimensional coprime array (TDCA) for two-dimensional direction of arrival (DOA) estimation, which possesses larger inter-element spacing so that the mutual coupling effects can be effectively relieved. Moreover, due to the larger array aperture, better DOA estimation performance can be achieved. To obtain more degrees of freedom (DOFs), a generalized TDCA (G-TDCA) configuration is proposed, which has a flexible array geometry and can extend the array aperture to obtain performance improvement. The principle for optimal array design of G-TDCA is derived to achieve the maximum DOF. And the Cramer–Rao Bounds which denotes as a theoretical benchmark for the lower bound of unbiased estimate are derived. Then we propose Khatri–Rao estimation signal parameters via rotational invariance techniques (KR-ESPRIT) algorithm and obtain the close-form expression. The algorithm can achieve angles with automatic pairing and doesn’t need spectrum peak searching. In order to decrease the computational complexity, we propose KR-Unitary ESPRIT algorithm, which can achieve approximate DOA estimation performance of the KR-ESPRIT algorithm with the lower computational complexity. Numerical simulation results verify the superiority of G-TDCA with proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine,13(4), 67–94.

    Article  Google Scholar 

  2. Zhang, X., Xu, L., et al. (2010). Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Communications Letters,14(12), 1161–1163.

    Article  Google Scholar 

  3. Cong, L., & Zhuang, W. (2002). Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Transactions on Wireless Communications,1(3), 439–447.

    Article  Google Scholar 

  4. Liu, J., Zhou, W., Juwono, F. H., et al. (2017). Reweighted smoothed l0-norm based DOA estimation for MIMO radar. Signal Processing,137(C), 44–51.

    Article  Google Scholar 

  5. Capon, J. (2005). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE,57(8), 1408–1418.

    Article  Google Scholar 

  6. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,34(3), 276–280.

    Article  Google Scholar 

  7. Roy, R., & Kailath, T. (2002). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,37(7), 984–995.

    Article  Google Scholar 

  8. Marcos, S., Marsal, A., & Benidir, M. (1995). The propagator method for source bearing estimation. Signal Processing,42(2), 121–138.

    Article  Google Scholar 

  9. Zheng, W., Zhang, X., Sun, H., et al. (2017). Non-circular generalized-ESPRIT algorithm for direction of arrival estimation. IET Radar, Sonar and Navigation,11(5), 736–744.

    Article  Google Scholar 

  10. Chen, H., Hou, C., Wang, Q., et al. (2015). Improved azimuth/elevation angle estimation algorithm for three-parallel uniform linear arrays. IEEE Antennas and Wireless Propagation Letters,14, 329–332.

    Article  Google Scholar 

  11. Xia, T., Zheng, Y., Wan, Q., et al. (2007). Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays. IEEE Transactions on Antennas and Propagation,55(9), 2627–2632.

    Article  Google Scholar 

  12. Cai, J. J., Qin, G. D., Peng, L. I., et al. (2014). Two-dimensional DOA estimation with reduced-dimensional MUSIC algorithm using the modulus constraint. Systems Engineering and Electronics,36(9), 1681–1686.

    MATH  Google Scholar 

  13. Zhang, Z., Wang, W., Huang, Y., et al. (2017). Decoupled 2-D direction of arrival estimation in L-shaped array. IEEE Communications Letters,21, 1989–1992.

    Article  Google Scholar 

  14. Mathews, C. P., & Zoltowski, M. D. (1994). Eigenstructure techniques for 2-D angle estimation with uniform circular array. IEEE Transactions on Signal Processing,42(9), 2395–2407.

    Article  Google Scholar 

  15. Ye, Z., & Liu, C. (2008). 2-D DOA estimation in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation,56(10), 3150–3158.

    Article  MathSciNet  Google Scholar 

  16. Steinberg, B. D. (1976). Principles of aperture and array system design. New York: Wiley.

    Google Scholar 

  17. Pal, P., & Vaidyanathan, P. P. (2011). Sparse sensing with coprime samplers and arrays. IEEE Transactions on Signal Processing,59(2), 573–586.

    Article  MathSciNet  Google Scholar 

  18. Qin, S., Zhang, Y. D., & Amin, M. G. (2015). Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing,63(6), 1377–1390.

    Article  MathSciNet  Google Scholar 

  19. Pal, P., & Vaidyanathan, P. P. (2011). Coprime sampling and the music algorithm. In Digital signal processing workshop and IEEE signal processing education Workshop (pp. 289–294).

  20. Zhou, C., Shi, Z., Gu, Y., & Shen, X. (2013). DECOM: DOA estimation with combined MUSIC for coprime array. In International conference on wireless communications and signal processing (pp. 1–5).

  21. Zheng, W., Zhang, X. F., Gong, P., et al. (2017). DOA estimation for coprime linear arrays: An ambiguity-free algorithm involving full DOFs. IEEE Communications Letters,22(3), 562–565.

    Article  Google Scholar 

  22. Wu, Q., Sun, F., Lan, P., Ding, G., & Zhang, X. (2016). Two-dimensional direction-of-arrival estimation for co-prime planar arrays: A partial spectral search approach. IEEE Sensors Journal,16(14), 5660–5670.

    Article  Google Scholar 

  23. Zheng, W., Zhang, X. F., & Shi, Z. (2017). Two-dimensional direction of arrival estimation for coprime planar arrays via a computationally efficient one-dimensional partial spectral search approach. IET Radar, Sonar and Navigation,11(10), 1581–1588.

    Article  Google Scholar 

  24. Zheng, W., Zhang, X. F., & Zhai, H. (2017). Generalized coprime planar array geometry for 2-D DOA estimation. IEEE Communications Letters,21(5), 1075–1078.

    Article  Google Scholar 

  25. Vu, D. T., Renaux, A., Boyer, R., & Marcos, S. (2011). A Cramér Rao bounds based analysis of 3D antenna array geometries made from ULA branches. Multidimensional Systems and Signal Processing,24(1), 121–155.

    Article  Google Scholar 

  26. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing,37(5), 720–741.

    Article  MathSciNet  Google Scholar 

  27. Stoica, P., & Nehorai, A. (1990). MUSIC, maximum likelihood, and Cramer–Rao bound: Further results and comparisons. IEEE Transactions on Acoustics, Speech, and Signal Processing,38(12), 2140–2150.

    Article  Google Scholar 

  28. Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing,38(10), 1783–1795.

    Article  Google Scholar 

  29. Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,37(7), 984–995.

    Article  Google Scholar 

  30. Jinli, C., Hong, G., & Weimin, S. (2008). Angle estimation using ESPRIT without pairing in MIMO radar. Electronics Letters,44(24), 1422–1423.

    Article  Google Scholar 

  31. Li, J., & Zhang, X. (2014). Unitary reduced-dimensional estimation of signal parameters via rotational invariance techniques for angle estimation in monostatic multiple-input–multiple-output radar with rectangular arrays. Radar Sonar & Navigation IET,8(6), 575–584.

    Article  Google Scholar 

  32. Haardt, M., & Nossek, J. (1995). Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden. Piscataway: IEEE Press.

    Google Scholar 

  33. Li, J., Jiang, D., & Zhang, X. (2017). DOA estimation based on combined unitary ESPRIT for coprime MIMO radar. IEEE Communications Letters, 21(1), 96–99.

    Article  Google Scholar 

Download references

Funding

This research is supported by China Natural Science Foundation Grants [61631020, 61601167, 61371169], and the Fundamental Research Funds for the Central Universities (NP2018103, NE2017103, NC2017003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Zhang, X. & Zhai, H. Generalized Three Dimensional Coprime Array for Two-Dimensional DOA Estimation. Wireless Pers Commun 110, 1995–2017 (2020). https://doi.org/10.1007/s11277-019-06826-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06826-9

Keywords

Navigation