Skip to main content
Log in

Towards Coverage-Aware Fuzzy Logic-Based Faulty Node Detection in Heterogeneous Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Detecting and handling faulty nodes is one of the main challenges in wireless sensor networks (WSNs). Most of the existing fault detection schemes rely on the data sensed by neighboring nodes, however, these schemes do not usually consider the nature of the events and the coverage issues. In this paper, we present a novel distributed fuzzy logic-based faulty node detection algorithm for heterogeneous WSNs. To weight of the values sensed by the neighboring nodes, the proposed algorithm applies factors such as distance, coverage and the difference of the sensed values. By using the proposed distributed algorithm, each sensor node can correctly recognize its status at the presence of the events such as fire and transient faults. Extensive simulations results indicate the effectiveness of the proposed algorithm in reducing the false positive problems and improving detection accuracy in the fault detection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Masdari, M., Bazarchi, S. M., & Bidaki, M. (2013). Analysis of secure LEACH-based clustering protocols in wireless sensor networks. Journal of Network and Computer Applications,36, 1243–1260.

    Article  Google Scholar 

  2. Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering,41, 177–190.

    Article  Google Scholar 

  3. Chouikhi, S., El Korbi, I., Ghamri-Doudane, Y., & Saidane, L. A. (2015). A survey on fault tolerance in small and large scale wireless sensor networks. Computer Communications,69, 22–37.

    Article  Google Scholar 

  4. Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,15, 2000–2026.

    Article  Google Scholar 

  5. Karim, L., Nasser, N., & Sheltami, T. (2014). A fault-tolerant energy-efficient clustering protocol of a wireless sensor network. Wireless Communications and Mobile Computing,14, 175–185.

    Article  Google Scholar 

  6. Park, D.-S. (2013). Fault tolerance and energy consumption scheme of a wireless sensor network. International Journal of Distributed Sensor Networks,9, 396850.

    Article  Google Scholar 

  7. Taleb, A. A., Mathew, J., Pradhan, D., & Kocak, T. (2009). A novel fault diagnosis technique in wireless sensor networks. International Journal on Advances in Networks and Services,2&3, 2009.

    Google Scholar 

  8. Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. Industrial Electronics, IEEE Transactions on,62, 3757–3767.

    Article  Google Scholar 

  9. Liu, X., Cao, J., Tang, S., & Guo, P. (2015). Fault tolerant complex event detection in WSNs: A case study in structural health monitoring. Mobile Computing, IEEE Transactions on,14, 2502–2515.

    Article  Google Scholar 

  10. Masdari, M., ValiKardan, S., Shahi, Z., & Azar, S. I. (2016). Towards workflow scheduling in cloud computing: A comprehensive analysis. Journal of Network and Computer Applications,66, 64–82.

    Article  Google Scholar 

  11. Masdari, M., Nabavi, S. S., & Ahmadi, V. (2016). An overview of virtual machine placement schemes in cloud computing. Journal of Network and Computer Applications,66, 106–127.

    Article  Google Scholar 

  12. Masdari, M., & Jalali, M. (2016). A survey and taxonomy of DoS attacks in cloud computing. Security and Communication Networks,9, 3724–3751.

    Article  Google Scholar 

  13. Ould-Ahmed-Vall, E., Ferri, B. H., & Riley, G. F. (2012). Distributed fault-tolerance for event detection using heterogeneous wireless sensor networks. Mobile Computing, IEEE Transactions on,11, 1994–2007.

    Article  Google Scholar 

  14. Sitanayah, L., Brown, K. N., & Sreenan, C. J. (2014). A fault-tolerant relay placement algorithm for ensuring k vertex-disjoint shortest paths in wireless sensor networks. Ad Hoc Networks,23, 145–162.

    Article  Google Scholar 

  15. Huang, J., & Wu, N. E. (2013). Fault-tolerant placement of phasor measurement units based on control reconfigurability. Control Engineering Practice,21, 1–11.

    Article  Google Scholar 

  16. Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications,35, 320–333.

    Article  Google Scholar 

  17. Panda, M., & Khilar, P. (2015). Distributed Byzantine fault detection technique in wireless sensor networks based on hypothesis testing. Computers & Electrical Engineering,48, 270–285.

    Article  Google Scholar 

  18. Di Fatta, G., Blasa, F., Cafiero, S., & Fortino, G. (2013). Fault tolerant decentralised K-Means clustering for asynchronous large-scale networks. Journal of Parallel and Distributed Computing,73, 317–329.

    Article  Google Scholar 

  19. Geeta, D., Nalini, N., & Biradar, R. C. (2013). Fault tolerance in wireless sensor network using hand-off and dynamic power adjustment approach. Journal of Network and Computer Applications,36, 1174–1185.

    Article  Google Scholar 

  20. Azharuddin, M., Kuila, P., & Jana, P. K. (2013). A distributed fault-tolerant clustering algorithm for wireless sensor networks. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 997–1002).

  21. Guo, S., Zhong,Z. & He, T. (2009). FIND: Faulty node detection for wireless sensor networks. In Proceedings of the 7th ACM conference on embedded networked sensor systems (pp. 253–266).

  22. De Paola, A., Lo Re, G., Milazzo, F., & Ortolani, M. (2013). QoS-Aware fault detection in wireless sensor networks. International Journal of Distributed Sensor Networks,9, 165732.

    Article  Google Scholar 

  23. Khan, S. A., Daachi, B., & Djouani, K. (2012). Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing,94, 111–120.

    Article  Google Scholar 

  24. Xu, X., Geng, W., Yang, G., Bessis, N., & Norrington, P. (2014). LEDFD: A low energy consumption distributed fault detection algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks,10(2), 714530.

    Article  Google Scholar 

  25. Lau, B. C., Ma, E. W., & Chow, T. W. (2014). Probabilistic fault detector for wireless sensor network. Expert Systems with Applications,41, 3703–3711.

    Article  Google Scholar 

  26. Lo, C., Lynch, J. P., & Liu, M. (2016). Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks. Mechanical Systems and Signal Processing,66, 470–484.

    Article  Google Scholar 

  27. Yu, T., Akhtar, A. M., Wang, X., & Shami, A. (2015). Temporal and spatial correlation based distributed fault detection in wireless sensor networks. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE) (pp. 1351–1355).

  28. Krishnamachari, B., & Iyengar, S. (2004). Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers,53, 241–250.

    Article  Google Scholar 

  29. Liu, P. (2002). Mamdani fuzzy system: Universal approximator to a class of random processes. IEEE Transactions on Fuzzy Systems,10, 756–766.

    Article  Google Scholar 

  30. Soro, S., & Heinzelman, W. B. (2005). Prolonging the lifetime of wireless sensor networks via unequal clustering. In Proceedings of the 19th IEEE international parallel and distributed processing symposium.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masdari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masdari, M., Özdemir, S. Towards Coverage-Aware Fuzzy Logic-Based Faulty Node Detection in Heterogeneous Wireless Sensor Networks. Wireless Pers Commun 111, 581–610 (2020). https://doi.org/10.1007/s11277-019-06875-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06875-0

Keywords

Navigation