Skip to main content
Log in

Effective User-Pair Association Schemes for Relay-Based Multi-tier Heterogeneous Networks with Physical Layer Security

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on relay-assisted multi-tier heterogeneous networks (HetNets) in term of feasible user-pair association (UPA) criterions and physical layer secrecy analysis. In the interesting relay-assisted multi-tier HetNets, the randomly located mobile user-pair communicates with the help of the relay of its associated tier. We model the locations of all network elements as independent Poisson point process. For such relay-assisted HetNets, similar to the nearest relay defined for user association in traditional single-hop HetNets, we define the so-called best relay in each tier for a typical mobile user-pair by using the equivalent end-to-end biased received power (BRP). Then based on the defined best-relay, we first propose the max–min user-pair association (MM-UPA) criterion. Due to the fact that the MM-UPA criterion is dominated by the bottleneck link’s BRP and does not exploit the joint effect of both the source-relay and relay-destination links, we present the maximum harmonic mean user-pair association (MHM-UPA) criterion, again. For the two UPA criterions, by using feasible mathematical analysis, we derive the corresponding UPA probabilities. Finally, as an implement of the two proposed UPA criterions, by using stochastic geometry, we perform the secrecy performance analysis of the considered relay-assisted multi-tier HetNets. The presented numerical analysis first validates our derivations through the comparison analysis with traditional single-hop user association criterion. At the same time, we also present the comparison analysis between the two proposed MM-UPA and MHM-UPA criterions. It is found that when the transmission power \(P_{R(S)}^{k}\) is small, the MHM-UPA scheme outperforms the MM-UPA one in term of UPA probability. On the contrary, the two schemes achieve approximately the same UPA probability. For the total secrecy probability, we find that when transmit power is small, the MHM-UPA achieves the higher secrecy probabilities. Moreover, the achieved gain by MHM-UPA is increasing with the decrease of transmission power. Contrarily, when the transmission power is large, although the MM-UPA outperforms the MHM-UPA, the achieved gain by MM-UPA cover MHM-UPA is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.

    Article  Google Scholar 

  2. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine,52(5), 94–101.

    Article  Google Scholar 

  3. Wang, S. W., & Sun, Y. (2017). Enhancing performance of heterogeneous cloud radio access networks with efficient user association. In Proceeding of the ICC (pp. 1–6).

  4. Chen, S. Y., Zhao, T. Y., Chen, H. H., Lu, Z. P., & Meng, W. X. (2017). Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Network,31(5), 106–114.

    Article  Google Scholar 

  5. Wang, S. W., & Ran, C. (2016). Rethinking cellular network planning and optimization. IEEE Wireless Communications,23(2), 118–125.

    Article  MathSciNet  Google Scholar 

  6. Goyal, S. J., Mezzavilla, M., Rangan, S., Panwar, S., & Zorzi, M. (2017). User association in 5G mmwave networks. In IEEE Wireless Communications and Networking Conference (pp. 1–6).

  7. Liu, D. T., Wang, L. F., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials,18(2), 1018–1044.

    Article  Google Scholar 

  8. Andrews, J. G., Singh, S., & Ye, Q. Y. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications,21(2), 18–25.

    Article  Google Scholar 

  9. Gong, J., Thompson, J. S., Zhou, S., & Niu, Z. S. (2014). Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Transactions on Communications,62(11), 3801–3813.

    Article  Google Scholar 

  10. Yang, Y., Chen, L., Dong, W. X., & Wang, W. D. (2015). Active base station set optimization for minimal energy consumption in green cellular networks. IEEE Transactions on Vehicular Technology,64(11), 5340–5349.

    Article  Google Scholar 

  11. Tabassum, H., Siddique, U., Hossain, E., & Hossain, M. J. (2014). Downlink performance of cellular systems with base station sleeping, user association, and scheduling. IEEE Transactions on Wireless Communications,13(10), 5752–5767.

    Article  Google Scholar 

  12. 3GPP TR 36.912 V2.0.0. (2009). Technical specification group radio access network; requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-advanced) (Release 9). 3rd Generation Partnership Project (3GPP).

  13. Chen, Y. J., Li, J., Lin, Z. H., Mao, G. Q., & Vucetic, B. (2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,65(9), 7374–7388.

    Article  Google Scholar 

  14. Khandekar, A., Bhushan, N., Ji, T. F., & Vanghi, V. (2010). LTE-advanced: Heterogeneous networks. In Proceedings of the WC (pp. 978–982).

  15. Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2011). Outage probability for heterogeneous cellular networks with biased cell association. In Proceedings of global telecommunications conference (pp. 1–5).

  16. Fooladivanda, D., & Rosenberg, C. (2012). Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications,12(1), 248–257.

    Article  Google Scholar 

  17. Jha, S. C., Sivanesan, K., Vannithamby, R., Koc, A. T. (2014). Dual connectivity in LTE small cell networks. In Proceedings of the Globecom Workshops (pp. 1205–1210).

  18. Sekander, S., Tabassum, H., & Hossain, E. (2016). Decoupled uplink-downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Transactions Mobile on Computing,16(10), 2778–2791.

    Article  Google Scholar 

  19. Semiari, O., Saad, W., Valentin, S., Bennis, M., & Maham, B. (2014). Matching theory for priority-based cell association in the downlink of wireless small cell networks. In Proceedings of acoustics, speech, and signal processing (pp. 444–448).

  20. Jia, X. D., Fu, H., & Yang, L. X. (2010). Superposition coding cooperative relaying communications: Outage performance analysis. The International Journal of Communication Systems,24(3), 384–397.

    Article  Google Scholar 

  21. Jia, X. D., & Yang, L. X. (2012). Upper and lower bounds of two-way opportunistic amplify-and-forward relaying channels. IEEE Communications Letters,16(8), 1180–1183.

    Article  Google Scholar 

  22. Jia, X. D., Yang, L. X., & Zhu, H. B. (2014). Cognitive opportunistic relaying systems with mobile nodes: Average outage rates and outage durations. IET Communications,8(6), 789–799.

    Article  Google Scholar 

  23. Ali, M., Qaisar, S., Naeem, M., & Mumtaz, S. (2016). Energy efficient resource allocation in D2D-assisted heterogeneous networks with relays. IEEE Access,4, 4902–4911.

    Article  Google Scholar 

  24. Al-Hourani, A., Kandeepan, S., & Hossain, E. (2016). Relay-assisted device-to-device communication: A stochastic analysis of energy saving. IEEE Transactions Mobile on Computing,15(12), 3129–3141.

    Article  Google Scholar 

  25. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communication Surveys & Tutorials,18(3), 1617–1655.

    Article  Google Scholar 

  26. Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine,52(2), 122–130.

    Article  Google Scholar 

  27. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.

    Article  Google Scholar 

  28. Jo, H. S., Sang, Y. J., & Xia, P. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun,11(10), 3484–3495.

    Article  Google Scholar 

  29. Dhillon, H. S., Ganti, R. K., & Baccelli, F. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications,30(3), 550–560.

    Article  Google Scholar 

  30. Hung, H. J., Ho, T. Y., Lee, S. Y., Yang, C. Y., & Yang, D. N. (2017). Relay selection for heterogeneous cellular networks with renewable green energy sources. IEEE Transactions on Mobile Computing,17(3), 661–674.

    Article  Google Scholar 

  31. Stoyan, D., Kendall, W., & Mecke, J. (1987). Stochastic geometry and its applications. Berlin: Wiley.

    MATH  Google Scholar 

  32. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications,59(11), 3122–3134.

    Article  Google Scholar 

  33. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine,53(4), 20–27.

    Article  Google Scholar 

  34. Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In IEEE international symposium on information theory (pp. 356–360).

  35. Mukherjee, A., Fakoorian, S. A. A., Jing, H., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials,16(3), 1550–1573.

    Article  Google Scholar 

  36. Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications,18(2), 66–74.

    Article  Google Scholar 

  37. Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications,64(3), 1204–1219.

    Article  Google Scholar 

  38. Wu, H. C., Tao, X. F., Li, N., & Xu, J. (2016). Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Communications Letters,20(1), 53–56.

    Article  Google Scholar 

  39. Tolossa, Y. J., Vuppala, S., & Abreu, G. (2017). Secrecy rate analysis in multi-tier heterogeneous networks over generalized fading model. IEEE Internet of Things (IoT) Journal,4(1), 101–110.

    Google Scholar 

  40. Kamel, M., Hamouda, W., & Youssef, A. (2017). Physical layer security in ultra-dense networks. IEEE Wireless Communications Letters,6(5), 1–1.

    Article  Google Scholar 

  41. Chen, J., Chen, X. M., Gerstacker, W. H., & Ng, D. W. K. (2016). Resource allocation for a massive MIMO relay aided secure communication. IEEE Transactions on Information Forensics and Security,11(8), 1700–1711.

    Article  Google Scholar 

  42. He, H. L., Ren, P. Y., Du, Q. H., & Sun, L. (2016). Full-Duplex or half-duplex? Hybrid relay selection for physical layer secrecy. In IEEE 83rd vehicular technology conference (pp. 1–5).

  43. Duong, T. Q., Zepernick, H. J., Tsiftsis, T. A., & Bao, V. N. Q. (2010). Amplify-and-forward MIMO relaying with OSTBC over Nakagami-m fading channels. Proceedings of IEEE International Conference on Communications,29(16), 1–6.

    Google Scholar 

  44. Bao, V. N. Q., Duong, T. Q., Costa, D. B. D., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters,17(3), 475–478.

    Article  Google Scholar 

  45. Duong, T. Q., & Zepernick, H. (2009). On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels. IEEE Communications Letters,13(3), 172–174.

    Article  Google Scholar 

  46. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Cambridge: Academic Press.

    MATH  Google Scholar 

  47. David, H. A., & Nagaraja, H. N. (2003). Order statistics. New York: Wiley.

    Book  Google Scholar 

  48. Haenggi, M., & Ganti, R. K. (2009). Interference in large wireless networks. Foundations and Trends in Networking,3(2), 127–248.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grants 61561043, 61861039, 61261015, the Science and technology plan Foundation of Gansu Province of China under Grant 18YF1GA060, the program of improving the scientific research ability of young teachers in Northwest Normal University: “Key technologies of next generation wireless networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Lemma 1

With (7), the CDF of \(P_{MM-SD}^{j}\) is calculated as follows.

$$\begin{aligned} F_{{P_{MM-SD}^{j} }} (x) & = \Pr \left\{ {P_{SD}^{j} \le x} \right\} = \Pr \left\{ {\hbox{min} \left( {\frac{{\left( {P_{S}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} }}{{R_{SR}^{j} }},\frac{{\left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} }}{{R_{RD}^{j} }}} \right) \le x} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \mathop = \limits^{(a)} 1 - \Pr \left\{ {\hbox{min} \left( {\frac{{\left( {P_{S}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} }}{{R_{SR}^{j} }},\frac{{\left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} }}{{R_{RD}^{j} }}} \right) > x} \right\} \\ & \mathop = \limits^{(b)} 1 - \Pr \left\{ {R_{SR}^{j} < \left( {P_{S}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} x^{ - 1} } \right\}\left\{ {R_{SD}^{j} < \left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} x^{ - 1} } \right\}\mathop = \limits^{(c)} 1 - \left( {1 - \exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} x^{ - 2} } \right)} \right)\left( {1 - \exp \left( { - \pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} x^{ - 2} } \right)} \right) \\ \end{aligned}$$
(43)

In (43), (a) follows from the order statistics, (b) from the independent assumption. In addition, (c) follows from the fact that in homogeneous PPP, the number of points follows Poisson distribution and the distance between a generic user and its association relay is Rayleigh, i.e., \(f_{{R_{SR}^{j} }} (x) = 2\pi \lambda_{j} \exp \left( { - \pi \lambda_{j} x^{2} } \right)\) and \(f_{{R_{RD}^{j} }} (x) = 2\pi \lambda_{j} \exp \left( { - \pi \lambda_{j} x^{2} } \right)\). Note that, in [28] the two results were also adopted. The PDF \(f_{{P_{MM-SD}^{j} }} (x)\) is achieved by taking the derivative of \(F_{{P_{MM-SD}^{j} }} (x)\).□

Appendix B

Proof of Lemma 2

To achieve the CDF of \(P_{MHM-SD}^{j}\), by using the definition (9) we have

$$F_{{P_{MHM-SD}^{j} }} \left( z \right) = \Pr \left\{ {\frac{{X_{j} Y_{j} }}{{X_{j} + Y_{j} }} \le z} \right\} = \Pr \left\{ {X_{j} \le \frac{{zY_{j} }}{{Y_{j} - z}}} \right\}$$
(44)

Using the result in [43] leads to

$$F_{{P_{MHM-SD}^{j} }} \left( z \right) = I_{1} + I_{2}$$
(45)

where we define

$$I_{1} = \int_{0}^{z} {\Pr \left\{ {X_{j} > \frac{zy}{y - z}} \right\}} f_{{Y_{j} }} \left( y \right)dy;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} I_{2} = \int_{z}^{\infty } {\Pr \left\{ {X_{j} \le \frac{zy}{y - z}} \right\}} f_{{Y_{j} }} \left( y \right)dy$$
(46)

It is easy to see that \(I_{1} = F_{{Y_{j} }} \left( z \right)\), since \({ \Pr }\left\{ {X_{j} > \frac{{zY_{j} }}{{Y_{j} - z}}} \right\} = 1\) as \(0 \le Y_{j} \le z\). Moreover, with the definition \(Y_{j} = \left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} /R_{RD}^{j}\), we have

$$F_{{{\text{Y}}_{j} }} \left( y \right) = { \Pr }\left\{ {\frac{{\left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} }}{{R_{RD}^{j} }} < y} \right\} = { \Pr }\left\{ {R_{RD}^{j} > \left( {P_{R}^{j} } \right)^{{\frac{1}{{\alpha_{j} }}}} y^{ - 1} } \right\} = \exp \left( { - \pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} y^{ - 2} } \right)$$
(47)

The PDF of \(Y_{j}\) is

$$F_{{{\text{Y}}_{j} }} \left( y \right) = 2\pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} y^{ - 3} \exp \left( { - \pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} y^{ - 2} } \right)$$
(48)

We have

$$I_{1} = \exp \left( { - \pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} z^{ - 2} } \right)$$
(49)

Therefore, we have (14).

With the similar argument, we have that the CDF of \(X_{j}\) is \(F_{{X_{j} }} \left( x \right) = \exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} x^{ - 2} } \right)\). This leads to the term \(I_{2}\) in (46) written as

$$\begin{aligned} I_{2} & = \int_{z}^{\infty } {\exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \left( {\frac{yz}{y - z}} \right)^{ - 2} } \right)} \times \frac{{2\pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{y^{3} }}\exp \left( { - \pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} y^{ - 2} } \right)dy \\ & = 2\pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} z^{ - 2} } \right)\int_{z}^{\infty } {\frac{1}{{y^{3} }}} \exp \left( { - \pi \lambda_{j} \left( {\frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{y^{2} }} - \frac{{2\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{yz}} \right)} \right)dy{\kern 1pt} \\ \end{aligned}$$
(50)

With the variable substitution \(t = 1/y\), (50) can be further written as

$$\begin{aligned} I_{ 2} & = 2\pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} z^{ - 2} } \right)\int_{0}^{{\frac{1}{z}}} t \exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)\left( {t^{2} - \frac{{2\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} t}}{{\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)z}}} \right)} \right)dt \\ & {\kern 1pt} = 2\pi \lambda_{j} \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \exp \left( { - \pi \lambda_{j} \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} z^{ - 2} } \right)\exp \left( {\pi \lambda_{j} \frac{{\left( {P_{S}^{j} } \right)^{{\frac{4}{{\alpha_{j} }}}} }}{{z^{2} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right) \times \left( {I_{21} + I_{22} } \right) \\ \end{aligned}$$
(51)

where \(I_{21}\) and \(I_{22}\) are defined respectively by

$$I_{21} = \int_{0}^{{\frac{1}{z}}} {\left( {t - \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right)} \times \exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)\left( {t - \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right)^{2} } \right)dt$$
(52)
$$I_{22} = \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}\int_{0}^{{\frac{1}{z}}} {\exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)\left( {t - \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right)^{2} } \right)} dt$$
(53)

The term I21 in (52) is calculated as

$$I_{ 2 1} = \frac{1}{2} \times \frac{1}{{\pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}} \times \left[ {\exp \left( { - \pi \lambda_{j} z^{ - 2} \frac{{\left( {P_{S}^{j} } \right)^{{\frac{4}{{\alpha_{j} }}}} }}{{\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right)} \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \left. {\exp \left( { - \pi \lambda_{j} z^{ - 2} \frac{{\left( {P_{R}^{j} } \right)^{{\frac{4}{{\alpha_{j} }}}} }}{{\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}} \right)} \right]$$
(54)

Substituting (54) into (51), we have (15) and (16).

At the same time, in (53) by using the variable substitution \(x = t - \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} /z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)\) the term I22 can be calculated as

$$\begin{aligned} I_{22} & = \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}\int_{{ - \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}}}}^{{\frac{1}{z}\frac{{\left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}}} {\exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)x^{2} } \right)} dx \\ & = \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)}} \times \left[ {\int_{0}^{{\frac{1}{z}\frac{{\left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}}} {\exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)x^{2} } \right)} dx} \right.{\kern 1pt} {\kern 1pt} + \left. {\int_{0}^{{\frac{1}{z}\frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}}} {\exp \left( { - \pi \lambda_{j} \left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)x^{2} } \right)} dx} \right] \\ & = \frac{{\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{z\left( {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } \right)^{{\frac{2}{{\alpha_{j} }}}} }} \times \left[ {\frac{\sqrt \pi }{2}\Upphi \left( {\frac{1}{z}\frac{{\sqrt {\pi \lambda_{j} } \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{\sqrt {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } }}} \right) + \left. {\frac{\sqrt \pi }{2}\Upphi \left( {\frac{1}{z}\frac{{\sqrt {\pi \lambda_{j} } \left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} }}{{\sqrt {\left( {P_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} + \left( {P_{R}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} } }}} \right)} \right] \times \frac{1}{{\sqrt {\pi \lambda_{j} } }}} \right. \\ \end{aligned}$$
(55)

where \(\Upphi \left( \cdot \right) = erf\left( \cdot \right)\) is the error function defined by (8.250.1) in [46]. Substituting (55) into (51), we have (17) and (18). The PDF of \(P_{MHM-SD}^{j}\) can be achieved by taking the derivative of \(F_{i} (z)\), \(i = 1,2,3,4,5\).□

Appendix C

Proof of Theorem 3

Obviously, to achieve \(P_{Sec}^{k}\), \(P_{Sec-S}^{k}\) and \(P_{Sec-R}^{k}\) in (38) are required. We first consider the term \(P_{Sec-S}^{k}\), which is written as

$$\begin{aligned} P_{Sec-S}^{k} & = \Pr \left\{ {\mathop {\hbox{max} }\limits_{{z \in \Upphi_{E} }} \left( {SINR_{SE}^{k} \left( z \right)} \right) \le T_{Sec} } \right\} \\ & {\kern 1pt} = \Pr \left\{ {\bigcap\limits_{{z \in \Upphi_{E} }} {SINR_{SE}^{k} \left( z \right) < T_{Sec} } } \right\}{\kern 1pt} = E_{{\Upphi_{E} }} \left[ {\prod\limits_{{z \in \Upphi_{E} }} {\Pr \left\{ {SINR_{SZ}^{k} \left( z \right) < T_{Sec} \left| z \right.} \right\}} } \right] \\ \end{aligned}$$
(56)

Then, by defining \(I_{S} = \sum_{j = 1}^{K} {\sum_{{i \in \Upphi_{j} \backslash S_{k} }} {P_{S}^{j} h_{Siz}^{j} \left( {Y_{Siz}^{j} } \right)^{{ - \alpha_{j} }} } }\) and substituting (35) into (56), we have

$$P_{Sec-S}^{k} = E_{{\Upphi_{E} }} \left[ {\prod\limits_{{z \in \Upphi_{E} }} {\left[ {1 - \exp \left( { - \left( {P_{S}^{k} \left( {Y_{SE}^{k} } \right)^{{ - \alpha_{k} }} } \right)^{ - 1} T_{Sec} \frac{w}{{L_{0} }}} \right)\mathcal{L}_{{I_{S} }} \left( {T_{Sec} \left( {\left( {P_{S}^{k} \left( {Y_{SE}^{k} } \right)^{{ - \alpha_{k} }} } \right)^{ - 1} } \right)} \right)} \right]} } \right]$$
(57)

where \(\mathcal{L}_{{I_{S} }} \left( \cdot \right)\) is the Laplace transformation of \(I_{S}\). From A.3 in [48] Eq. (57) can be written as

$$P_{Sec-S}^{k} = \exp \left( {\left( { - 2\pi \lambda_{E} } \right)\int_{0}^{\infty } {\exp \left( { - \left( {P_{S}^{k} r^{{ - \alpha_{k} }} } \right)^{ - 1} T_{Sec} \frac{w}{{L_{0} }}} \right)} \mathcal{L}_{{I_{S} }} \left( {T_{Sec} \left( {\left( {P_{S}^{k} r^{{ - \alpha_{k} }} } \right)^{ - 1} } \right)} \right)rdr} \right)$$
(58)

With the definition of \(I_{S} = \sum_{j = 1}^{k} {\sum_{{i \in \Upphi_{j} \backslash S_{k} }} {P_{S}^{j} h_{Siz}^{j} \left( {Y_{Siz}^{j} } \right)^{{ - \alpha_{j} }} } }\), we have the Laplace transform \(\mathcal{L}_{{I_{S} }} \left( s \right)\) given by

$$\begin{aligned} \mathcal{L}_{{I_{S} }} \left( s \right) & = E_{{\Upphi_{j} ,h}} \left[ {\exp \left( { - s\sum_{j = 1}^{K} {\sum_{{i \in \Upphi_{j} \backslash S_{k} }} {P_{S}^{j} h_{Siz}^{j} \left( {Y_{Siz}^{j} } \right)^{{ - \alpha_{j} }} } } } \right)} \right] = \prod\limits_{j = 1}^{K} {E_{{\Upphi_{j} ,h}} } \left[ {\exp \left( { - s\sum_{{i \in \Upphi_{j} \backslash S_{k} }}^{k} {P_{S}^{j} h_{Siz}^{j} \left( {Y_{Siz}^{j} } \right)^{{ - \alpha_{j} }} } } \right)} \right] \\ & {\kern 1pt} \mathop = \limits^{(a)} \prod\limits_{j = 1}^{K} {\exp \left( { - 2\pi \lambda_{j} \int_{0}^{\infty } {\left( {1 - \frac{1}{{1 + sP_{S}^{j} r^{{ - \alpha_{j} }} }}} \right)rdr} } \right)} = \prod\limits_{j = 1}^{K} {\exp \left( { - 2\pi \lambda_{j} \int_{0}^{\infty } {\frac{rdr}{{1 + \left( {sP_{S}^{j} } \right)^{ - 1} r^{{\alpha_{j} }} }}} } \right)} \\ & = \prod\limits_{j = 1}^{K} {\exp \left( { - \pi \lambda_{j} \left( {sP_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \frac{2}{{\alpha_{j} }}\int_{0}^{\infty } {\frac{{x^{{\frac{2}{{\alpha_{j} }} - 1}} dx}}{1 + x}} } \right)} \mathop = \limits^{(b)} \prod\limits_{j = 1}^{K} {\exp \left( { - \pi^{2} \lambda_{j} \left( {sP_{S}^{j} } \right)^{{\frac{2}{{\alpha_{j} }}}} \times {\text{cosec}}\left( {\frac{2}{{\alpha_{j} }}} \right)} \right)} \\ \end{aligned}$$
(59)

where (a) follows from the mapping theorem [48] and (b) follows from the (3.194.4) in [46]. Then, by substituting (59) into (58) we have (41).

$$P_{Sec-S}^{k} = \exp \left( { - 2\pi \lambda_{E} \int_{0}^{\infty } {\exp \left( { - \left( {P_{S}^{k} r^{{ - \alpha_{k} }} } \right)^{ - 1} T_{Sec} \frac{w}{{L_{0} }} - \sum_{j = 1}^{K} {\pi^{2} \lambda_{j} \left( {\left( {T_{Sec} r^{{ - \alpha_{k} }} } \right)^{ - 1} \frac{{P_{S}^{j} }}{{P_{S}^{k} }}} \right)^{{\frac{2}{{\alpha_{j} }}}} \cos {\text{ec}}\left( {\frac{2}{{\alpha_{j} }}} \right)} } \right)} } \right)$$
(60)

With the consideration of symmetry between \(SINR_{RZ}^{k} \left( z \right)\) and \(SINR_{SZ}^{k} \left( z \right)\), it is easy to achieve \(P_{Sec-R}^{k}\) by replacing \(P_{S}^{k}\) and \(P_{S}^{j}\) with \(P_{R}^{k}\) and \(P_{R}^{j}\), respectively. We have (42).□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Yang, X. & Xu, W. Effective User-Pair Association Schemes for Relay-Based Multi-tier Heterogeneous Networks with Physical Layer Security. Wireless Pers Commun 111, 963–990 (2020). https://doi.org/10.1007/s11277-019-06895-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06895-w

Keywords

Navigation