Skip to main content
Log in

Low Complexity User Selection and Power Allocation for Uplink NOMA Beamforming Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we develop user selection and power allocation methods for NOMA systems equipped with multi-antenna to enhance the sum capacity of the uplink. The system has the base station (BS) with \( N \) antenna supporting 2N users in the same spectrum resource simultaneously, and successive interference cancellation (SIC) is applied at the BS. Because the superposition of multiple users in transmission within the same frequency resource block leads to the interference among users, we derive a user set selection algorithm and a suboptimal power control to mitigate the interference effect and to maximize the sum capacity. The user set selection algorithm is first applied by comparing the designed indicator which balances the factors affecting the sum capacity of the uplink. Second, the derived suboptimal power assignment algorithm is utilized with power control factors where four cases are evaluated. The simulation results show that the proposed schemes can significantly improve the sum capacity than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, W. C. Y. (1991). Overview of cellular CDMA. IEEE Transactions on Vehicular Technology,40(2), 291–302.

    Article  MathSciNet  Google Scholar 

  2. Kayama, H., & Jiang, H. (2014). Evolution of LTE and new radio access technologies for FRA (future radio access). In Proceedings of the IEEE ACSSC (pp. 1944–1948).

  3. Docomo, N. T. T. (2012). Requirements, candidate solutions and technology roadmap for LTE Rel-12 onward. RWS-120010. In: 3GPP workshop on release 12 onward ljubljana, June 11–12, 2012.

  4. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Transactions on Wireless Communications,15(11), 7244–7257.

    Article  Google Scholar 

  5. Li, A., Benjebbour, A., Chen, X., Jiang, H., & Kayama, H. (2015). Uplink non-orthogonal multiple access (NOMA) with single-carrier frequency division multiple access (SCFDMA) for 5G systems. IEICE Transactions on Communications,98(8), 1426–1435.

    Article  Google Scholar 

  6. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of the IEEE 77th VTC Spring (pp. 1–5) June 2013.

  7. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials,19(2), 721–742.

    Article  Google Scholar 

  8. Tomida, S., & Higuchi, K. (2011). Non-orthogonal access with SIC in cellular downlink for user fairness enhancement. In 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS) (pp. 1–6).

  9. Takeda, T., Higuchi, K. (2011). Enhanced user fairness using non-orthogonal access with SIC in cellular uplink. In: 2011 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  10. Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and nonorthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine,1(3), 4–11.

    Article  MathSciNet  Google Scholar 

  11. Schaepperle, J., & Rüegg, A. (2009). Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling. Bell Labs Technical Journal,4(13), 59–77.

    Article  Google Scholar 

  12. Schaepperle, J. (2010). Throughput of a wireless cell using superposition based multiple-access with optimized scheduling. In Proceedings IEEE 21st PIMRC (pp. 212–217).

  13. Luo, F.-L., & Zhang, C. J. (2016). Signal processing for 5G: Algorithms and implementations. Hoboken: Wiley.

    Book  Google Scholar 

  14. GPP TSG-RAN1 #42bis R1-0501162 (2005). UL virtual MIMO transmission for E-UTRA. San Diego, USA.

  15. Chen, C.-J., & Wang, L.-C. (2007). Performance analysis of scheduling in multiuser mimo systems with zero-forcing receivers. IEEE Journal on Selected Areas in Communications,25(7), 1435–1445.

    Article  Google Scholar 

  16. Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory,49(7), 1691–1706.

    Article  MathSciNet  Google Scholar 

  17. Endo, Y., Kishiyama, Y., & Higuchi, K. (2012). Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference. In International symposium on wireless communication systems (ISWCS) (pp. 261–265).

  18. Zhang, N., Wang, J., Kang, G., & Liu, Y. (2016). Uplink nonorthogonal multiple access in 5G systems. IEEE Communications Letters,20(3), 458–461.

    Article  Google Scholar 

  19. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access,4, 6325–6343.

    Google Scholar 

  20. Kim, B., Chung, W., Lim, S., Suh, S., Kwun, J., Choi, S., & Hong, D. (2015). Uplink NOMA with multi-antenna. In Proceedings of the IEEE 81st VTC Spring (pp. 1–5).

  21. Liu, W., Yang, L. L., & Hanzo, L. (2009). SVD-Assisted multiuser transmitter and multiuser detector design for MIMO systems. IEEE Transactions on Vehicular Technology,58(2), 1016–1021.

    Article  Google Scholar 

  22. Viswanath, P., & Tse, D. N. C. (2003). Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Transactions on Information Theory,49(8), 1912–1921.

    Article  MathSciNet  Google Scholar 

  23. Ratnam, V. V., Molisch, A. F., & Papadopoulos, H. C. (2016). MIMO systems with restricted pre/post-coding—capacity analysis based on coupled doubly correlated Wishart matrices. IEEE Transactions on Wireless Communications,15(12), 8537–8550.

    Article  Google Scholar 

  24. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures, 3GPP, TS 36.213 V 8.1.0.

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 108-2221-E-008 -020 -MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Fang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 The derivation of \( \alpha_{2,1}^{*} \) and \( \alpha_{2,2}^{*} \)

In (15), for assuming that the antenna number is two, we represent the objective function as

$$ \begin{aligned}& {\mathop{\max}\limits_{\left[{\varvec{\alpha}_{1}^{*},\varvec{\alpha}_{2}^{*}} \right]}} \left({R_{1,1 -NOMA} + R_{1,2 - NOMA} + R_{2,1 - NOMA} + R_{2,2 - NOMA}}\right) \\ & \quad ={\mathop{\max}\limits_{\left[{\varvec{\alpha}_{1}^{*},\,\varvec{\alpha}_{2}^{*}}\right]}} BW\left[\log_{2} \left({1 + \frac{{A_{1,1}}}{{\alpha_{2,1}C_{2,1}^{\left(1 \right)} + \alpha_{2,2} C_{2,2}^{\left(1 \right)} + 1}}} \right) \right. \\ &\quad \left. \quad + \log_{2}\left({1 + \frac{{A_{1,2}}}{{\alpha_{2,1} C_{2,1}^{\left(2 \right)} + \alpha_{2,2} C_{2,2}^{\left(2 \right)} +1}}} \right) + \log_{2} \left({1 + \alpha_{2,1} A_{2,1}}\right) \right.\\ &\quad \left. \quad + \log_{2} \left({1 + \alpha_{2,2} A_{2,2}} \right) \right] \end{aligned} $$
(25)

where \( A_{i,j} = \left| {{\mathbf{h}}_{i,j} } \right|^{2} \gamma_{i,j} \), \( \gamma_{i,j} = P_{{i,{\text{j}}}} /\sigma^{2} \), and \( C_{i,j}^{\left( n \right)} = \left| {{\mathbf{w}}_{1,n} {\mathbf{h}}_{i,j} } \right|^{2} \gamma_{i,j} \). And the constraints in (15) are \( R_{1,j - NOMA} \ge R_{1,j - OMA} \) and \( R_{2,j - NOMA} \ge R_{2,j - OMA} \) for \( \forall j = 1,2 \). They are also written as follows:

$$ \log_{2} \left( {1 + \frac{{A_{{1,{\text{j}}}} }}{{\alpha_{2,1} C_{2,1}^{\left( j \right)} + \alpha_{2,2} C_{2,2}^{\left( j \right)} + 1}}} \right) \ge \log_{2} \left( {1 + A_{{1,{\text{j}}}} } \right)^{{\frac{1}{2}}} , $$
(26)
$$ \log_{2} \left( {1 + \alpha_{{2,{\text{j}}}} A_{{2,{\text{j}}}} } \right) \ge \log_{2} \left( {1 + A_{{2,{\text{j}}}} } \right)^{{\frac{1}{2}}} . $$
(27)

If (26) and (27) are satisfied for \( \forall j = 1,2 \), (26) and (27) can be rearranged and then can be expressed below:

$$ A_{{1,{\text{j}}}} - \varphi_{{1,{\text{j}}}} \alpha_{2,1} C_{2,1}^{\left( j \right)} - \varphi_{{1,{\text{j}}}} \alpha_{2,2} C_{2,2}^{\left( j \right)} - \varphi_{{1,{\text{j}}}} \ge 0\quad \forall j = 1,2 $$
(28)

and

$$ \alpha_{{2,{\text{j}}}} \ge \frac{{\varphi_{{2,{\text{j}}}} }}{{A_{{2,{\text{j}}}} }}\quad \forall j = 1,2 $$
(29)

where \( \varphi_{1,j} = \sqrt {1 + A_{1,j} } - 1 \) and \( \varphi_{2,j} = \sqrt {1 + A_{2,j} } - 1 \) for \( \forall j = 1,2 \).

Afterward, (25) is also reconstructed into

$$ \begin{aligned} \mathop { \hbox{max} }\limits_{{\left[ {\varvec{\alpha}_{1}^{ *} ,\varvec{\alpha}_{2}^{ *} } \right]}} \left[ {\begin{array}{*{20}c} {\log_{2} \left( {\begin{array}{*{20}c} {1 + \frac{{A_{1,1} }}{{\alpha_{2,1} C_{2,1}^{\left( 1 \right)} + \alpha_{2,2} C_{2,2}^{\left( 1 \right)} + 1}} + \alpha_{2,1} A_{2,1} } \\ { + \frac{{A_{1,1} \alpha_{2,1} A_{2,1} }}{{\alpha_{2,1} C_{2,1}^{\left( 1 \right)} + \alpha_{2,2} C_{2,2}^{\left( 1 \right)} + 1}}} \\ \end{array} } \right)} \\ { + \log_{2} \left( {\begin{array}{*{20}c} {1 + \frac{{A_{1,2} }}{{\alpha_{2,1} C_{2,1}^{\left( 2 \right)} + \alpha_{2,2} C_{2,2}^{\left( 2 \right)} + 1}} + \alpha_{2,2} A_{2,2} } \\ { + \frac{{A_{1,2} \alpha_{2,2} A_{2,2} }}{{\alpha_{2,1} C_{2,1}^{\left( 2 \right)} + \alpha_{2,2} C_{2,2}^{\left( 2 \right)} + 1}}} \\ \end{array} } \right)} \\ \end{array} } \right] \hfill \\ = \mathop { \hbox{max} }\limits_{{\left[ {\varvec{\alpha}_{1}^{ *} ,\varvec{\alpha}_{2}^{ *} } \right]}} \left[ {\begin{array}{*{20}c} {\log_{2} \left( {1 + f_{1} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right)} \right)} \\ { + \log_{2} \left( {1 + f_{2} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right)} \right)} \\ \end{array} } \right]. \hfill \\ \end{aligned} $$
(30)

Moreover, (31) can be maximized if \( f_{1} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right) \) and \( f_{2} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right) \) are both maximized. However, \( f_{1} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right) \) and \( f_{2} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right) \) all involve parameters \( \alpha_{2,1} \) and \( \alpha_{2,2} \) and can not be maximized separately. For \( f_{1} \), the partial derivatives are taken with respect to \( \alpha_{2,1} \) and \( \alpha_{2,2} \). From the partial derivative with respect to \( \alpha_{2,1} \), we have the expression as follows:

$$ \frac{{\partial f_{1} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right)}}{{\partial \alpha_{2,1} }} > 0\quad {\text{if}}\quad \alpha_{2,2} > \frac{{C_{2,1}^{\left( 1 \right)} - A_{2,1} }}{{C_{2,2}^{\left( 1 \right)} A_{2,1} }}. $$
(31)

As \( \alpha_{2,2} \ge \frac{{\varphi_{2,2} }}{{A_{2,2} }} \) is the constraint in (29), (32) can be filled. That is, \( f_{1} \) is a monotonic increasing function of \( \alpha_{2,1} \). Hence, we set \( \alpha_{2,1} = 1 \) (\( 0 \le \alpha_{2,1} \le 1 \)) in \( f_{1} \) to maximize \( f_{1} \). Then, for the partial derivative with respect to \( \alpha_{2,1} \), we have

$$ \frac{{\partial f_{1} \left( {1,\alpha_{2,2} } \right)}}{{\partial \alpha_{2,2} }} < 0, $$
(32)

\( f_{1} \) is a monotonic decreasing function of \( \alpha_{2,2} \); nevertheless, the minimum \( \alpha_{2,2} \) is restricted by (29). For these reasons,

$$ \alpha_{2,2} = \frac{{\varphi_{2,2} }}{{A_{2,2} }}. $$
(33)

The other case of maximizing \( f_{2} \left( {\alpha_{2,1} ,\alpha_{2,2} } \right) \) can be obtained by using the similar approach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Chen, YF., Tseng, SM. et al. Low Complexity User Selection and Power Allocation for Uplink NOMA Beamforming Systems. Wireless Pers Commun 111, 1413–1429 (2020). https://doi.org/10.1007/s11277-019-06923-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06923-9

Keywords

Navigation