Skip to main content
Log in

Cloud Integrated IoT Enabled Sensor Network Security: Research Issues and Solutions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Security of cloud computing and Internet of things (IoT) enabled sensor networks are two significant areas of research that have a great impact in developing numerous societal applications such as smart healthcare, smart city, smart agriculture etc. in a secure manner. The devices involved in these technologies are exposed to vulnerabilities since they are distributed in nature and moreover they try to fetch real-time information and forward it to cloud for processing. Cloud computing offers a platform for storing and processing the data sensed and sent by the sensor devices. In the previous literature, many researchers have studied the security issues and challenges of IoT and Cloud separately. Still, there is a gap in the literature and it is required to explore the integrated security issues in the Cloud integrated IoT environment. Analyzing the integrated security issues of the existing technologies is of much importance and novel idea for their successful implementation. In this paper we focused on exploring the vulnerabilities of the integrated environment. In addition, we had presented the security issues and challenges in the cloud and IoT enabled sensor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey.. https://doi.org/10.1016/j.comnet.2018.03.012.

    Article  Google Scholar 

  2. Tewari, A., & Gupta, B. B. (2018). Security, privacy and trust of different layers in Internet-of-Things (IoTs) framework. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.04.027.

    Article  Google Scholar 

  3. Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University Computer and Information Sciences,30(3), 3. https://doi.org/10.1016/j.jksuci.2016.10.003.

    Article  Google Scholar 

  4. Internet-of-things-definition. (2016). https://iot-analytics.com/internet-of-things-definition/(iotintro).

  5. El, H., & azharyaba., (2019). Internet of Things (IoT) mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms Disambiguation and research directions. Journal of Network and Computer Applications,28, 105–140. https://doi.org/10.1016/j.jnca.2018.10.021.

    Article  Google Scholar 

  6. Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. (2019). Communication protocols for wireless sensor networks: A survey and comparison. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01591.

    Article  Google Scholar 

  7. Wireless_sensor_network. (2016). https://en.wikipedia.org/wiki/Wireless_sensor_network(intro)

  8. Rastko, R., Selmic, P., Serwadda, V. V. (2016). Wireless sensor networks security, coverage, and localization. https://link.springer.com/chapter/10.1007/978-3-319-46769-6_2.

  9. Tarun Agarwal. (2019). https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications.

  10. Cloud Computing. (2017). https://en.wikipedia.org/wiki/Cloud_computing.

  11. Stergio, C., Psannis, K. E., Kim, B.-G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation Computer Systems,78, 964–975. https://doi.org/10.1016/j.future.2016.11.031.

    Article  Google Scholar 

  12. Hovhannesavoyan. (2016). https://www.monitis.com/blog/3-types-of-cloud-services/(cloudservices).

  13. Di Martino, B., Pascarella, J., Nacchia, S., Maisto, S. A., Iannucci, P., & Cerri, F. (2018). Cloud services categories identification from requirements specifications. In 32nd international conference on advanced information networking and applications workshops (WAINA), Krakow (pp. 436–441). https://doi.org/10.1109/WAINA.2018.00125.

  14. Tyagi, A., Kushwah, J., & Bhalla, M. (2017). Threats to security of Wireless Sensor Networks. In 7th international conference on cloud computing, data science & engineering—Confluence, Noida (pp. 402–405). https://doi.org/10.1109/CONFLUENCE.2017.7943183.

  15. Evans, K., Jones, A., Preece, A., Quevedo, F., Rogers, D., Spasić, I., Taylor, I., Stankovski, V. Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P. N., Wang, J., & Zhao, Z. (2015). Dynamically reconfigurable workflows for time-critical applications. In WORKS '15: proceedings of the 10th workshop on workflows in support of large-scale science (pp. 1–10). https://doi.org/10.1145/2822332.2822339.

  16. Štefanič, P., Cigale, M., Jones, A. C., Knight, L., Taylor, I., Istrate, C., et al. (2019). SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native applications. Future Generation Computer Systems,99, 197–212. https://doi.org/10.1016/j.future.2019.04.008.

    Article  Google Scholar 

  17. Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021.

    Article  Google Scholar 

  18. Aazam, M., & Huh, E.-N.(2014). Fog computing and smart gateway based communication for cloud of things. In International conference on future internet of things and cloud (FiCloud) (pp. 464–470). https://doi.org/10.1109/FiCloud.2014.83.

  19. Serrano, M., Hauswirth, M., & Soldatos, J. (2014). Design principles for utility-driven services and cloud-based computing modelling for the internet of things. International Journal of Web and Grid Services, 10(2–3), 139–167. https://doi.org/10.1504/IJWGS.2014.060254.

    Article  Google Scholar 

  20. Deogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. In International conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC), Palladam (pp. 32–37). https://doi.org/10.1109/I-SMAC.2017.8058363.

  21. Ghosh, S., Mukherjee, A., Ghosh, S. K., & Buyya, R. (2019). Mobi-IoST: Mobility-aware cloud-fog-edge-IoT collaborative framework for time-critical applications. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2019.2941754.

    Article  Google Scholar 

  22. Haddad Pajouh, H., Dehghantanha, A., Parizi, R. M., Aledhari, M., & Karimipour, H. (2019). A survey on internet of things security: Requirements, challenges, and solutions. Internet of Things. https://doi.org/10.1016/j.iot.2019.100129.

    Article  Google Scholar 

  23. Margaret Rouse. (2016). https://internetofthingsagenda.techtarget.com/definition/smart-city.

  24. Home_automation. (2018) .https://en.wikipedia.org/wiki/Home_automation.

  25. Smart-home-or-building. (2017). https://internetofthingsagenda.techtarget.com/definition/smart-home-or-building.

  26. Knud Lasse Lueth. (2015). https://iot-analytics.com/10-internet-of-things-applications.

  27. Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient monitoring system based on internet of things. Procedia Computer Science,83, 90–97. https://doi.org/10.1016/j.procs.2016.04.103.

    Article  Google Scholar 

  28. Hussain, S. A., Fatima, M., Saeed, A., Raza, I., & Shahzad, R. K. (2017). Multilevel classification of security concerns in cloud computing. Applied Computing and Informatics,13(1), 57–65. https://doi.org/10.1016/j.aci.2016.03.001.

    Article  Google Scholar 

  29. Alshammari, A., Alhaidari, S., Alharbi, A., & Zohdy, M. (2018). Security threats and challenges in cloud computing. In IEEE 4th international conference on cyber security and cloud computing (CSCloud), New York. NY (pp. 46–51). https://doi.org/10.1109/CSCloud.2017.59.

  30. Singh, R., et al. (2016). Attacks on wireless sensor network: A survey. International Journal of Computer Science and Mobile Computing,5(5), 10–16.

    Google Scholar 

  31. Al-Shayeji, M., & Ebrahime, F. (2019). A secure and energy-efficient platform for the integration of Wireless Sensor Networks and Mobile Cloud Computing. Computer Networks. https://doi.org/10.1016/j.comnet.2019.106956.

    Article  Google Scholar 

  32. Gaware, A., & Dhonde, S. B. (2016). A survey on security attacks in wireless sensor networks. In 3rd international conference on computing for sustainable global development (INDIACom), New Delhi (pp. 536–539).

  33. Liu, J., Yu, J., & Shen, S. (2017). Energy-efficient two-layer cooperative defense scheme to secure sensor-clouds. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.20172756344.

    Article  Google Scholar 

  34. Sahi, A., Lal, D., Li, Y., & Diykh, M. (2017). An efficient DDos TCP flood attack detection and prevention system in a cloud environment. IEEE Access. https://doi.org/10.1109/Access.2017.2688460.

    Article  Google Scholar 

  35. Cheng, H., Rong, C., Qian, M., & Wang, W. (2018). Accountable privacy-preserving mechanism for cloud computing based on identify-based encryption. IEEE Access. https://doi.org/10.1109/Access.2018.2851599.

    Article  Google Scholar 

  36. Anglano, C., Gaeta, R., & Grangetto, M. (2016). Securing coding-based cloud storage against pollution attacks. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/10.1109/TPDS.2016.2619686.

    Article  Google Scholar 

  37. Li, J., Lin, X., Zhang, Y., & Han, J. (2016). IEEE KSF-OABE: Outsourced attributed-based encryption with keyword search function for cloud storage. IEEE Transaction on Services Computing. https://doi.org/10.1109/TSC.2016.2542813.

    Article  Google Scholar 

  38. Al Hamid, H. A., Rahman, S. M. M., Hossain, M. S., Almogren, A., & Alamri, A. (2017). A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography. IEEE Access. https://doi.org/10.1109/access.2017.2757844.

    Article  Google Scholar 

  39. Win, T. Y., Tianfield, H., & Mair, Q. (2017). Big data based security analytics for protecting virtualized infrastructures in cloud computing. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2017.2715335.

    Article  Google Scholar 

  40. Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2015). Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2015.2487361.

    Article  Google Scholar 

  41. Chen, R., Mu, Y., Yang, G., Guo, F., & Wang, X. (2015). Dual-server public-key encryption with keyword search for secure cloud storage. IEEE Transactions on Information Forensics Security. https://doi.org/10.1109/TIPS.2015.2510822.

    Article  Google Scholar 

  42. Wang, G., Liu, C., Dong, Y., Pan, H., & Fang, B. (2017). IDCrypt: A multi-user searchable symmetric encryption scheme for cloud applications. IEEE Access. https://doi.org/10.1109/Access.2017.2786026.

    Article  Google Scholar 

  43. Wang, J., Chen, X., Huang, X., You, I., & Xiang, Y. (2015). Verifiable auditing for outsourced database in cloud computing. IEEE Transaction on Computers. https://doi.org/10.1109/TC.2015.2401036.

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Q., Yu, C. W., Li, F., Wang, H., & Cao, L. (2016). A group key-policy attribute-based encryption with partial outsourcing decryption in wireless sensor networks. Security and Communication Networks. https://doi.org/10.1002/sec.1594.

    Article  Google Scholar 

  45. Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2018). An energy efficient encryption method for secure dynamic WSN Research article. Security and Communication Networks. https://doi.org/10.1002/sec.1459.

    Article  Google Scholar 

  46. Juliadotter, N. V., & Choo, K. K. R. (2015). Cloud attack and risk assessment taxonomy. IEEE Cloud Computing Society,2, 14–20.

    Article  Google Scholar 

  47. Shaik, A. A., & Mandal, M. M. (2016). Attacks on cloud computing and its countermeasures. In International conference on signal processing, communication, power and embedded system (SCOPES).

  48. Vacca, J. R. (2013). Computer and information security handbook (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  49. Chen, S. L., Tuan, M. C., Lee, H.-Y., & Lin, T.-L. (2017). IEEE VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access. https://doi.org/10.1109/Access.2017.2679123.

    Article  Google Scholar 

  50. Lu, Y., Zhai, J., Zhu, R., & Qin, J. (2016). Study of wireless authentication center with mixed encryption in WSN. Journal of Sensors. https://doi.org/10.1155/2016/9297562.

    Article  Google Scholar 

  51. Sofwan, A., Ridho, M., & Goni, A. (2017). Wireless sensor network design for landslide warning system in IoT Architecture (ICITACEE). In 4th international conference on information technology, computer, and electrical engineering (ICITACEE). https://doi.org/10.1109/ICITACEE.2017.8257718.

  52. Khail, N., Abid, M. R., Benhaddu, D., & Gerndt, M. (2014). Wireless sensors networks for internet of things (pp. 21–24). Singapore: ISSNIP.

    Google Scholar 

  53. Ivana, T., & McCann, J. A. (2017). A survey of potential security issues in existing wireless sensor network protocols. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2017.2749883.

    Article  Google Scholar 

  54. D’Orazio, C. J., Choo, K. K. R., & Yang, L. T. (2017). Data exfiltration from internet of things devices iOS devices as case studies. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2016.2569094.

    Article  Google Scholar 

  55. Zhou, Y., Qiu, G., & Qiu, Y. (2016). An improved traffic safety information fusion algorithm in internet of vehicles. IEEE Internet of Things journal. https://doi.org/10.1109/ICCS.2016.7833610.

    Article  Google Scholar 

  56. Cheng, C.-T., Ganganath, N., & Fok, K.-Y. (2017). Concurrent data collection trees for IoT applications. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2016.2610139.

    Article  Google Scholar 

  57. Bouabdellah, M., Kaabouch, N., El Bouanani, F., & Ben-Azza, H. (2017). Network layer attacks and countermeasures in cognitive radio networks: A survey. Journal of Information Security and Applications. https://doi.org/10.1016/j.jisa-2017.11.010.

    Article  Google Scholar 

  58. Smith, R. E. (2016). Elementary information security (2nd ed.). Burlington: Jones and Bartlett Learning.

    Google Scholar 

  59. Xiong, H., Chen, Z., & Li, F. (2012). Efficient and multi-level privacy-preserving communication protocol fog vanet. Computers & Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2011.11.009.

    Article  Google Scholar 

  60. Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and System Sciences,80(5), 973–993. https://doi.org/10.1016/j.jcss.2014.02.005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Geetha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, R., Suntheya, A.K. & Srikanth, G.U. Cloud Integrated IoT Enabled Sensor Network Security: Research Issues and Solutions. Wireless Pers Commun 113, 747–771 (2020). https://doi.org/10.1007/s11277-020-07251-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07251-z

Keywords

Navigation